期刊文献+

Assessment of Genetic Variation in Soybean (<i>Glycine max</i>) Accessions from International Gene Pools Using RAPD Markers: Comparison with the ISSR System

Assessment of Genetic Variation in Soybean (<i>Glycine max</i>) Accessions from International Gene Pools Using RAPD Markers: Comparison with the ISSR System
下载PDF
导出
摘要 Soybean (</span><i><span style="font-family:Verdana;">Glycine</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) is one of the most important crops in the world in terms of total production and usage. It is also among the least diverse species. The main objectives of the present study were to 1) assess the level of genetic variation among soybean (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) accessions from different countries using Random Amplified Polymorphic DNA (RAPD) markers and 2) compare Inter Simple Sequence Repeats (ISSR) and RAPD marker systems in detecting polymorphic loci in soybeans (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">). Genomic DNAs from 108 soybeans (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) accessions from 11 different gene pools were analyzed using several ISSR and RAPD primers. The average level of polymorphic loci detected with the RAPD primers was 35%. The soybean accessions from the China, Netherlands, and Canada gene pools were the least genetically variable with 25%, 26%, and 30% of polymorphic loci, respectively. Accessions from Hungary (43%) and France (48%) showed the highest level of polymorphism based on the RAPD analysis. Overall, RAPD data revealed that the accessions from different countries are closely related with 64% genetic distance values below 0.40. The levels of polymorphic loci detected with the RAPD and ISSR marker systems were in general moderate and similar even if they target different regions of the genome. A combination of different marker systems that include RAPD/ISSR, microsatellites (SSR), and SNPs should provide the most accurate information on genetic variation of soybean (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) accessions. Soybean (</span><i><span style="font-family:Verdana;">Glycine</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) is one of the most important crops in the world in terms of total production and usage. It is also among the least diverse species. The main objectives of the present study were to 1) assess the level of genetic variation among soybean (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) accessions from different countries using Random Amplified Polymorphic DNA (RAPD) markers and 2) compare Inter Simple Sequence Repeats (ISSR) and RAPD marker systems in detecting polymorphic loci in soybeans (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">). Genomic DNAs from 108 soybeans (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) accessions from 11 different gene pools were analyzed using several ISSR and RAPD primers. The average level of polymorphic loci detected with the RAPD primers was 35%. The soybean accessions from the China, Netherlands, and Canada gene pools were the least genetically variable with 25%, 26%, and 30% of polymorphic loci, respectively. Accessions from Hungary (43%) and France (48%) showed the highest level of polymorphism based on the RAPD analysis. Overall, RAPD data revealed that the accessions from different countries are closely related with 64% genetic distance values below 0.40. The levels of polymorphic loci detected with the RAPD and ISSR marker systems were in general moderate and similar even if they target different regions of the genome. A combination of different marker systems that include RAPD/ISSR, microsatellites (SSR), and SNPs should provide the most accurate information on genetic variation of soybean (</span><i><span style="font-family:Verdana;">G.</span></i> <i><span style="font-family:Verdana;">max</span></i><span style="font-family:Verdana;">) accessions.
作者 Kabwe Nkongolo Sarah Alamri Paul Michael Kabwe Nkongolo;Sarah Alamri;Paul Michael(Department of Biology, Laurentian University, Sudbury, Ontario, Canada;Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada)
出处 《American Journal of Plant Sciences》 2020年第9期1414-1428,共15页 美国植物学期刊(英文)
关键词 SOYBEAN <i>Glycine max</i> Genetic Variations ISSR RAPD Molecular Markers Soybean <i>Glycine max</i> Genetic Variations ISSR RAPD Molecular Markers
  • 相关文献

参考文献1

二级参考文献2

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部