摘要
The aim of the present study was to evaluate the performance of Napier cultivars in terms of forage yield, plant morphology and nutrient contents under two different agro-ecology and geo-topographic conditions. Three Napier cultivars being conserved by Bangladesh Livestock Research Institute (BLRI), namely-BLRI</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Napier 1, (BN-1), BLRI</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Napier 3 (BN-3) and Merkeron (BN-5) were selected to cultivate in severe drought prone areas (called Barind) and non-drought area at Savar (Modhupur terrace). Stem cuttings were planted in rows apart from 70 cm and 35cm spacing between plants. Data of 6 consecutive harvests from a period of approximately one year were collected and analyzed statistically by “R” software. The results showed that cultivar and location had </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">significant (P < 0.001) effect on biomass yield, plant height and leaf-stem ratio (LSR), while number of tillers </span><span style="font-family:Verdana;">were </span><span style="font-family:Verdana;">significantly varied with locations. BN-3 yielded the highest biomass (33.32 t/ha/harvest) at non-drought location (42.98 t/ha/harvest). The highest plant height was obtained in BN-1 (171.2 cm) at non-drought location (174.6 cm). Number of tiller</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> per hill ranged from 25.4 to 26.3 among cultivars (P > 0.05) and the highest tillers were found at non-drought location (28.1 no). The best LSR was estimated from BN-5 (0.86) at drought location (0.95). The proximate analysis showed that CP, ADF and NDF in whole plant </span><span style="font-family:Verdana;">were </span><span style="font-family:Verdana;">varied significantly (P < 0.001), being the highest contents in BN-1 (10.69%, 46.20% and 54.58%, respectively). On the other hand, DM and ash contents did not differ significantly (P > 0.05) among cultivars which ranged from 15.80% to 17.13% and 13.10% to 14.58%, respectively. The highest CP content in whole plant was obtained at non-drought location (11.89%), while the lowest ash (10.57%) and NDF (52.71%) contents were obtained at the same location. The highest CP contents in leaf were found at non-drought (15.03%) and the lowest ash (9.86%) at the same location. The highest CP contents (5.90%) in stem were found at non-drought location, while the lowest ash (11.28%) and NDF (54.59%) contents </span><span style="font-family:Verdana;">were obtained </span><span style="font-family:Verdana;">at the same location. Finally, the experiment reveals the superiority in biomass yield and nutritional quality (in</span><span style="font-family:""> </span><span style="font-family:Verdana;">terms of CP content) with the ranking orders of BN-3 > BN-1 > BN-5 and BN-1 > BN-3 > BN-5. Therefore, it may be concluded that BN-1, BN-3</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and BN-5 cultivars were well adapted in both drought and non-drought conditions, although performance showed better in later condition</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. However, in terms of forage yield and overall nutrient composition, the performance of BN-3 was the best irrespective of locations.
The aim of the present study was to evaluate the performance of Napier cultivars in terms of forage yield, plant morphology and nutrient contents under two different agro-ecology and geo-topographic conditions. Three Napier cultivars being conserved by Bangladesh Livestock Research Institute (BLRI), namely-BLRI</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Napier 1, (BN-1), BLRI</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Napier 3 (BN-3) and Merkeron (BN-5) were selected to cultivate in severe drought prone areas (called Barind) and non-drought area at Savar (Modhupur terrace). Stem cuttings were planted in rows apart from 70 cm and 35cm spacing between plants. Data of 6 consecutive harvests from a period of approximately one year were collected and analyzed statistically by “R” software. The results showed that cultivar and location had </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">significant (P < 0.001) effect on biomass yield, plant height and leaf-stem ratio (LSR), while number of tillers </span><span style="font-family:Verdana;">were </span><span style="font-family:Verdana;">significantly varied with locations. BN-3 yielded the highest biomass (33.32 t/ha/harvest) at non-drought location (42.98 t/ha/harvest). The highest plant height was obtained in BN-1 (171.2 cm) at non-drought location (174.6 cm). Number of tiller</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> per hill ranged from 25.4 to 26.3 among cultivars (P > 0.05) and the highest tillers were found at non-drought location (28.1 no). The best LSR was estimated from BN-5 (0.86) at drought location (0.95). The proximate analysis showed that CP, ADF and NDF in whole plant </span><span style="font-family:Verdana;">were </span><span style="font-family:Verdana;">varied significantly (P < 0.001), being the highest contents in BN-1 (10.69%, 46.20% and 54.58%, respectively). On the other hand, DM and ash contents did not differ significantly (P > 0.05) among cultivars which ranged from 15.80% to 17.13% and 13.10% to 14.58%, respectively. The highest CP content in whole plant was obtained at non-drought location (11.89%), while the lowest ash (10.57%) and NDF (52.71%) contents were obtained at the same location. The highest CP contents in leaf were found at non-drought (15.03%) and the lowest ash (9.86%) at the same location. The highest CP contents (5.90%) in stem were found at non-drought location, while the lowest ash (11.28%) and NDF (54.59%) contents </span><span style="font-family:Verdana;">were obtained </span><span style="font-family:Verdana;">at the same location. Finally, the experiment reveals the superiority in biomass yield and nutritional quality (in</span><span style="font-family:""> </span><span style="font-family:Verdana;">terms of CP content) with the ranking orders of BN-3 > BN-1 > BN-5 and BN-1 > BN-3 > BN-5. Therefore, it may be concluded that BN-1, BN-3</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and BN-5 cultivars were well adapted in both drought and non-drought conditions, although performance showed better in later condition</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. However, in terms of forage yield and overall nutrient composition, the performance of BN-3 was the best irrespective of locations.