期刊文献+

Morphological and Physiological Development of Organic Greenhouse Grown Ginger (Zingiber officinalis, Rosc) in a Temperate Climate as Influenced by Container and Transplant Origin

Morphological and Physiological Development of Organic Greenhouse Grown Ginger (Zingiber officinalis, Rosc) in a Temperate Climate as Influenced by Container and Transplant Origin
下载PDF
导出
摘要 Ginger (Zingiber officinale Rosc) is a spice produced from underground rhizomes. This makes it necessary to consider the size of its growing area. There is limited information on the phenological development of the plant in containerized greenhouse conditions in temperate regions where natural daylength decreases as the growing season advances. This study determined the effects of container and rhizome sources on ginger shoot growth, chlorophyll concentration, leaf chlorophyll index, transpiration rate, and rhizome yield. Ginger, from non-tissue culture (O1) and tissue culture (O2) origins, were transplanted in a greenhouse in June 2019, 2020 and 2021, and monitored in five container types of different sizes. These were (C1) plastic Supertub (113.2 L), (C2) large Sterilite box (55.3 L), (C3) small Sterilite box (36.7 L), (C4) Husky heavy duty contractor plastic clean up bags (26.3 L) and (C5) Root Trapper Grounder Squat bag (27.9 L). The results did not show consistent trends for the effects of the respective size and origin combinations on most of the morphological characteristics, and all the physiological characteristics evaluated. Increasing container size increased the shoot biomass in all studies and increased fresh rhizome yield in two of three studies in the greenhouse. The effect of transplant origin was inconclusive, with a tissue culture advantage one year and no effect the other year. During the first 5 months after transplanting, the morphological development of tillers and height increased. Leaf chlorophyll index, chlorophyll concentration and stomatal conductance varied across sampling months, and within container and rhizome origin at individual sampling dates. The development of the plants in a greenhouse with decreasing natural day length posed a challenge as some plants senesced within 5 months after transplanting. Further opportunities to arrest senescence and extend growth should be introduced as another approach to extend growth and increase rhizome yield. Ginger (Zingiber officinale Rosc) is a spice produced from underground rhizomes. This makes it necessary to consider the size of its growing area. There is limited information on the phenological development of the plant in containerized greenhouse conditions in temperate regions where natural daylength decreases as the growing season advances. This study determined the effects of container and rhizome sources on ginger shoot growth, chlorophyll concentration, leaf chlorophyll index, transpiration rate, and rhizome yield. Ginger, from non-tissue culture (O1) and tissue culture (O2) origins, were transplanted in a greenhouse in June 2019, 2020 and 2021, and monitored in five container types of different sizes. These were (C1) plastic Supertub (113.2 L), (C2) large Sterilite box (55.3 L), (C3) small Sterilite box (36.7 L), (C4) Husky heavy duty contractor plastic clean up bags (26.3 L) and (C5) Root Trapper Grounder Squat bag (27.9 L). The results did not show consistent trends for the effects of the respective size and origin combinations on most of the morphological characteristics, and all the physiological characteristics evaluated. Increasing container size increased the shoot biomass in all studies and increased fresh rhizome yield in two of three studies in the greenhouse. The effect of transplant origin was inconclusive, with a tissue culture advantage one year and no effect the other year. During the first 5 months after transplanting, the morphological development of tillers and height increased. Leaf chlorophyll index, chlorophyll concentration and stomatal conductance varied across sampling months, and within container and rhizome origin at individual sampling dates. The development of the plants in a greenhouse with decreasing natural day length posed a challenge as some plants senesced within 5 months after transplanting. Further opportunities to arrest senescence and extend growth should be introduced as another approach to extend growth and increase rhizome yield.
作者 Lurline Marsh Gabrielle Morris Brett Smith Petrina McKenzie-Reynolds Lurline Marsh;Gabrielle Morris;Brett Smith;Petrina McKenzie-Reynolds(Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA)
出处 《American Journal of Plant Sciences》 2022年第4期443-456,共14页 美国植物学期刊(英文)
关键词 CONTAINER Transplant Origin Organic Agriculture Container Transplant Origin Organic Agriculture
  • 相关文献

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部