摘要
That FeSO4 not FeCl3 can reduce the blood glucose levels of alloxan-induced diabetes mice has been reported in previous research. This study explained the cause of difference in activity of two different iron ions on diabetic mice based on glucose consumption (GC). FeSO4, FeCl3, Vitamine c (Vc), FeSO4 + Vc, metformin were administrated to the alloxan induced-diabetic mice, respectively. After administrated, serum glucose, fructosaminr, insulin, triglyceride, total cholesterol, total iron and Fe2+ levels and GC of liver in vivo were analyzed, respectively. In vitro, effect of different iron ions coupled with Vc or streptozotocin on GC of liver of diabetic mice of model group were analyzed. The body weights and serum insulin levels of Fe2+ and Fe2+ + Vc treated diabetic mice notably increased. The serum glucose, fructosamine, triglyceride and total cholesterol levels were significantly decreased, whereas serum total iron and Fe2+ levels and GC in liver were increased in the Fe2+, Vc and Fe2+ + Vc groups compared with in the model groups. In addition, hardly change of serum insulin level was caused by Fe2+, Vc and Fe2+ + Vc treatment. However, the similar resultst did not obtain a Fe3+ treated. Further, liver’s GC of untreated-diabetic mice was lower than of normal mice and significantly increased after Fe2+ not Fe3+ added to the reaction resolution in vitro, and further increased when Fe2+ and vitamin c (Vc) synchronously added to the reaction system, however, decreased when Fe2+ and Streptozotocin were added synchronously to the reaction resolution. It is suggested that iron coupled with reducer can enhance the glucose metabolism to eventually achieve to controlling blood glucose levels.
That FeSO4 not FeCl3 can reduce the blood glucose levels of alloxan-induced diabetes mice has been reported in previous research. This study explained the cause of difference in activity of two different iron ions on diabetic mice based on glucose consumption (GC). FeSO4, FeCl3, Vitamine c (Vc), FeSO4 + Vc, metformin were administrated to the alloxan induced-diabetic mice, respectively. After administrated, serum glucose, fructosaminr, insulin, triglyceride, total cholesterol, total iron and Fe2+ levels and GC of liver in vivo were analyzed, respectively. In vitro, effect of different iron ions coupled with Vc or streptozotocin on GC of liver of diabetic mice of model group were analyzed. The body weights and serum insulin levels of Fe2+ and Fe2+ + Vc treated diabetic mice notably increased. The serum glucose, fructosamine, triglyceride and total cholesterol levels were significantly decreased, whereas serum total iron and Fe2+ levels and GC in liver were increased in the Fe2+, Vc and Fe2+ + Vc groups compared with in the model groups. In addition, hardly change of serum insulin level was caused by Fe2+, Vc and Fe2+ + Vc treatment. However, the similar resultst did not obtain a Fe3+ treated. Further, liver’s GC of untreated-diabetic mice was lower than of normal mice and significantly increased after Fe2+ not Fe3+ added to the reaction resolution in vitro, and further increased when Fe2+ and vitamin c (Vc) synchronously added to the reaction system, however, decreased when Fe2+ and Streptozotocin were added synchronously to the reaction resolution. It is suggested that iron coupled with reducer can enhance the glucose metabolism to eventually achieve to controlling blood glucose levels.