期刊文献+

Testing the Efficacy of eGFP-Transformed Aspergillus flavus as Biocontrol Strains

下载PDF
导出
摘要 Current biological control methods to prevent pre-harvest aflatoxin contamination of corn, cottonseed, and ground and tree nuts involve field inoculation of non-aflatoxigenic Aspergillus flavus. To date, the efficacy of this approach requires annual reapplication of the biocontrol agent. The reason for this requirement is uncertain. To track the dispersal and test the longevity of these strains, we prepared fluorescent biocontrol strains by incorporating into them the gene expressing the enhanced green fluorescent protein (eGFP). We first investigated the effects of eGFP transformation on the ability of the fluorescent fungus to compete with its non-fluorescent homolog, and then with other heterologous non-aflatoxigenic strains as well as with aflatoxigenic isolates. Our findings indicate that, in these studies, detection of fluorescence was variable, with some fluorescent strains exhibiting enhanced growth and sporulation post-transformation. In our tests, not all transformed strains proved to be good candidates for tracking because their fluorescence was reduced over the course of our study. Most of the transformed strains retained fluorescence and showed robust colony growth in an artificial competitor environment;therefore, they should be suited for further trial under more natural settings. Our ultimate objective is to determine if out-crossing between biocontrol strains and native field populations is occurring in a natural setting. Current biological control methods to prevent pre-harvest aflatoxin contamination of corn, cottonseed, and ground and tree nuts involve field inoculation of non-aflatoxigenic Aspergillus flavus. To date, the efficacy of this approach requires annual reapplication of the biocontrol agent. The reason for this requirement is uncertain. To track the dispersal and test the longevity of these strains, we prepared fluorescent biocontrol strains by incorporating into them the gene expressing the enhanced green fluorescent protein (eGFP). We first investigated the effects of eGFP transformation on the ability of the fluorescent fungus to compete with its non-fluorescent homolog, and then with other heterologous non-aflatoxigenic strains as well as with aflatoxigenic isolates. Our findings indicate that, in these studies, detection of fluorescence was variable, with some fluorescent strains exhibiting enhanced growth and sporulation post-transformation. In our tests, not all transformed strains proved to be good candidates for tracking because their fluorescence was reduced over the course of our study. Most of the transformed strains retained fluorescence and showed robust colony growth in an artificial competitor environment;therefore, they should be suited for further trial under more natural settings. Our ultimate objective is to determine if out-crossing between biocontrol strains and native field populations is occurring in a natural setting.
出处 《Food and Nutrition Sciences》 2013年第4期469-479,共11页 食品与营养科学(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部