摘要
Proteins recovered were obtained from Whitemouth Croaker (Micropogonias furnieri) byproducts and their physico-chemical and functional properties were evaluated. The proximate composition, presented 8.64% ± 0.10% of moisture, 85.33% ± 0.12% of protein, 2.69% ± 0.09% of ashes and 2.16% ± 0.12% of lipids, in dry basis. The highest solubility was obtained in pH 11 (93.24%), the maximum water holding capacity was presented at pH 11 (25.71 mL H2O/gprotein), the oil holding capacity was 13.71 mL/gprotein and the digestibility in vitro was 91.32% ± 0.15%. The electro-phoretic profile was observed typical of the myofibrillar proteins, with the appearance of the heavy chain of myosin (220 kDa) and actin (50 kDa). The results show that the products of low commercial value of fish that are usually used for the production of animal feed or simply discarded, contributing to environmental pollution, may be used to produce products with a greater added value.
Proteins recovered were obtained from Whitemouth Croaker (Micropogonias furnieri) byproducts and their physico-chemical and functional properties were evaluated. The proximate composition, presented 8.64% ± 0.10% of moisture, 85.33% ± 0.12% of protein, 2.69% ± 0.09% of ashes and 2.16% ± 0.12% of lipids, in dry basis. The highest solubility was obtained in pH 11 (93.24%), the maximum water holding capacity was presented at pH 11 (25.71 mL H2O/gprotein), the oil holding capacity was 13.71 mL/gprotein and the digestibility in vitro was 91.32% ± 0.15%. The electro-phoretic profile was observed typical of the myofibrillar proteins, with the appearance of the heavy chain of myosin (220 kDa) and actin (50 kDa). The results show that the products of low commercial value of fish that are usually used for the production of animal feed or simply discarded, contributing to environmental pollution, may be used to produce products with a greater added value.