摘要
Delivering high quality dietary protein at an affordable price is a major aim of the EU-funded CHANCE project. Foods have been formulated with this aim and as part of their nutritional assessment;the bioaccessbility of nutrients following simulated gastroduodenal digestion is being investigated. Nutrimetabolomics approaches can be used to comprehensively and quantitatively analyse nutrients and metabolites. They have been applied to monitor nutrient release from ham, formulated in the CHANCE project, during in vitro digestion. SDS-PAGE analysis shows that constituent ham proteins were broken down to lower molecular weight polypeptides (Mr ≤ 10 kDa) after 120 min simulated gastric digestion which was digested further by subsequent duodenal digestion. Digestion of porteins resulted in the appearance of coalesced lipid droplets associated with the loss of the muscle protein matrix of the ham. Important nutrients, such as choline, creatine, carnosine, sucrose, cholesterol, triacylglyceride and fatty acids (saturated and unsaturated) were identified using 1H NMR. Chance ham is a good source of dietary protein and the combined approach can provide representative data on the bioaccessibility of all detectable nutrients contained in CHANCE ham to human digestive system.
Delivering high quality dietary protein at an affordable price is a major aim of the EU-funded CHANCE project. Foods have been formulated with this aim and as part of their nutritional assessment;the bioaccessbility of nutrients following simulated gastroduodenal digestion is being investigated. Nutrimetabolomics approaches can be used to comprehensively and quantitatively analyse nutrients and metabolites. They have been applied to monitor nutrient release from ham, formulated in the CHANCE project, during in vitro digestion. SDS-PAGE analysis shows that constituent ham proteins were broken down to lower molecular weight polypeptides (Mr ≤ 10 kDa) after 120 min simulated gastric digestion which was digested further by subsequent duodenal digestion. Digestion of porteins resulted in the appearance of coalesced lipid droplets associated with the loss of the muscle protein matrix of the ham. Important nutrients, such as choline, creatine, carnosine, sucrose, cholesterol, triacylglyceride and fatty acids (saturated and unsaturated) were identified using 1H NMR. Chance ham is a good source of dietary protein and the combined approach can provide representative data on the bioaccessibility of all detectable nutrients contained in CHANCE ham to human digestive system.