期刊文献+

Microbiological and Nutritional Assessment of Starter-Developed Fermented Tigernut Milk

Microbiological and Nutritional Assessment of Starter-Developed Fermented Tigernut Milk
下载PDF
导出
摘要 Fermented tigernut milk (FTM) was prepared from three different varieties (fresh yellow, big and small dry brown) of tigernut (Cyperus esculenta) obtained from Bodija market, Ibadan, Oyo state. Fifty two microbial isolates were obtained from FTM at different fermentation times, 32 of which were on MRS agar, 12 on nutrient agar and 8 on malt extract agar. Lactic acid bacteria were identified as Lactobacillus plantarum (LP), Lactococcus lactis (LC), Lactobacillus brevis, Lactococcus cremoris, Lactobacillus bulgaricus and Lactococcus thermophilus (LT). The non-LAB identified includes E. coli, Bacillus species and Proteus species while the yeasts include Saccharomyces cerevisiae and Candida kefyr. Lactic acid bacteria were found to predominate the total microflora of the FTM with their count ranging between 2.0 × 104 cfu/ml to 2.0 × 108 cfu/ml. Microbiological examination revealed that the FTM was safe for consumption as non-LAB counts were below the limit of acceptance which is 2.0 × 105 cfu/ml for dairy milk by Codex Alimentarius Commission. The quantity of lactic acid produced by the LAB isolates ranged between 0.86 g/l - 2.86 g/l while that of hydrogen peroxide ranged between 0.16 g/l - 0.51 g/l. Starter cultures were selected based on predominance of isolate, physiological characteristics, quantity of lactic acid and hydrogen peroxide production. The tiger nut varieties were fermented with the following starter combinations LP, LP/LC, LP/LC/LT, LP/LT while the fifth was spontaneously fermented. The nutritional, chemical and sensory properties of the starter fermented tiger nut milk were evaluated. The highest protein content (24.80%) was obtained in FTM with mixed cultures of LP/LC/LT while the least (3.00%) was obtained in spontaneously fermented milk. There was a significant difference in the FTM varieties. The highest fat content (9.40%) was obtained in spontaneously fermented tiger nut milk while the least (3.40%) was found in FTM with mixed cultures of LP/LC/LT. Fermentation decreased the pH and increased the lactic acid of the starter developed FTM, while sensory evaluation test showed that the FTM with mixed cultures of LP/LC/LT was highly acceptable. In conclusion, an excellent and acceptable FTM can be produced using treatments which comprise of pasteurization at 90°?for 15 minutes, fermentation at 45℃?for 18 hours using mixed cultures of Lactobacillus plantarum, Lactococcus lactis and Lactococcus thermophilus. Fermented tigernut milk (FTM) was prepared from three different varieties (fresh yellow, big and small dry brown) of tigernut (Cyperus esculenta) obtained from Bodija market, Ibadan, Oyo state. Fifty two microbial isolates were obtained from FTM at different fermentation times, 32 of which were on MRS agar, 12 on nutrient agar and 8 on malt extract agar. Lactic acid bacteria were identified as Lactobacillus plantarum (LP), Lactococcus lactis (LC), Lactobacillus brevis, Lactococcus cremoris, Lactobacillus bulgaricus and Lactococcus thermophilus (LT). The non-LAB identified includes E. coli, Bacillus species and Proteus species while the yeasts include Saccharomyces cerevisiae and Candida kefyr. Lactic acid bacteria were found to predominate the total microflora of the FTM with their count ranging between 2.0 × 104 cfu/ml to 2.0 × 108 cfu/ml. Microbiological examination revealed that the FTM was safe for consumption as non-LAB counts were below the limit of acceptance which is 2.0 × 105 cfu/ml for dairy milk by Codex Alimentarius Commission. The quantity of lactic acid produced by the LAB isolates ranged between 0.86 g/l - 2.86 g/l while that of hydrogen peroxide ranged between 0.16 g/l - 0.51 g/l. Starter cultures were selected based on predominance of isolate, physiological characteristics, quantity of lactic acid and hydrogen peroxide production. The tiger nut varieties were fermented with the following starter combinations LP, LP/LC, LP/LC/LT, LP/LT while the fifth was spontaneously fermented. The nutritional, chemical and sensory properties of the starter fermented tiger nut milk were evaluated. The highest protein content (24.80%) was obtained in FTM with mixed cultures of LP/LC/LT while the least (3.00%) was obtained in spontaneously fermented milk. There was a significant difference in the FTM varieties. The highest fat content (9.40%) was obtained in spontaneously fermented tiger nut milk while the least (3.40%) was found in FTM with mixed cultures of LP/LC/LT. Fermentation decreased the pH and increased the lactic acid of the starter developed FTM, while sensory evaluation test showed that the FTM with mixed cultures of LP/LC/LT was highly acceptable. In conclusion, an excellent and acceptable FTM can be produced using treatments which comprise of pasteurization at 90°?for 15 minutes, fermentation at 45℃?for 18 hours using mixed cultures of Lactobacillus plantarum, Lactococcus lactis and Lactococcus thermophilus.
出处 《Food and Nutrition Sciences》 2014年第6期495-506,共12页 食品与营养科学(英文)
关键词 Tigernut MILK PASTEURIZATION Fermentation Starter-Development MIXED-CULTURE Tigernut Milk Pasteurization Fermentation Starter-Development Mixed-Culture
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部