期刊文献+

Nutritional, Chemical and Organoleptical Characteristics of Low-Calorie Fruit Nectars Incorporating Stevioside as a Natural Sweetener 被引量:1

Nutritional, Chemical and Organoleptical Characteristics of Low-Calorie Fruit Nectars Incorporating Stevioside as a Natural Sweetener
下载PDF
导出
摘要 The study is aiming at preparation of low-calorie fruit nectars for diabetes and weight maintaining approaches as well as consumer satisfaction. Therefore, twenty low-calorie fruit-based formulated nectars were prepared mainly from orange, pomegranate, guava and mango pulps which sweetened with sucrose or sucrose— replaced at 25%, 50%, 75% and 100% using stevioside. Primitively, the yield of fresh fruits had been calculated. Consequently, nutritional, chemical and organoleptical characteristics of prepared fruit nectars have been determined. Results indicated that total solids content was in range of 5.57% - 13.20%, 9.90% - 14.37%, 8.25% - 13.27% and 8.25% - 16.50% for orange, pomegranate, guava and mango nectars, respectively. Dependently, caloric value resulted 21.57 to 51.08, 38.31 to 55.62, 31.93 to 51.37 and 31.93 to 63.86 kcal 100 g-1 fw for orange, pomegranate, guava and mango nectars, respectively. Total phenols content [TPC, mg GAE 100 g-1 dw] ranged from 665.12 to 747.41, 1180.42 to 1319.47, 742.54 to 848.27 and 418.01 to 472.42 for orange, pomegranate, guava and mango nectars, respectively. The antioxidant capacity by DPPH method [μmol TE g-1 dw] ranged from (20.79 to 26.51), (47.13 to 56.56), (60.68 to 69.25) and (8.39 to 13.32) for orange, pomegranate, guava and mango nectars, respectively. Total carotenoids [mg 100 g-1 dw] were the highest in mango nectars ranged from (102.99 to 110.52) in mango nectar with 100% sugar and mango nectar with 100% stevioside, respectively. Anthocyanins content recorded 6.14 mg 100 g-1 dw in pomegranate nectar with 100% sugar, while increased to be 9.01 mg 00 g-1 dw in pomegranate nectar with 100% stevioside. Ascorbic acid [mg 100 g fw] ranged from 23.41 to 27.53, 15.73 to 18.32, 25.72 to 30.87 and 18.07 to 20.98 for orange, pomegranate, guava and mango nectars, respectively. The results of organoleptical attributes showed no effect of sugar substituting by stevioside on color, odor and mouth feel. The most dramatic effect of sugar substituting had been observed on taste, bitter after taste and the overall acceptability of prepared nectars with high substitution levels. Practically, using stevioside to produce low-calorie nectars was shown to be satisfactory up to 50% - 75% substituting level, resulting low-calorie nectars and could be applied commercially. The study is aiming at preparation of low-calorie fruit nectars for diabetes and weight maintaining approaches as well as consumer satisfaction. Therefore, twenty low-calorie fruit-based formulated nectars were prepared mainly from orange, pomegranate, guava and mango pulps which sweetened with sucrose or sucrose— replaced at 25%, 50%, 75% and 100% using stevioside. Primitively, the yield of fresh fruits had been calculated. Consequently, nutritional, chemical and organoleptical characteristics of prepared fruit nectars have been determined. Results indicated that total solids content was in range of 5.57% - 13.20%, 9.90% - 14.37%, 8.25% - 13.27% and 8.25% - 16.50% for orange, pomegranate, guava and mango nectars, respectively. Dependently, caloric value resulted 21.57 to 51.08, 38.31 to 55.62, 31.93 to 51.37 and 31.93 to 63.86 kcal 100 g-1 fw for orange, pomegranate, guava and mango nectars, respectively. Total phenols content [TPC, mg GAE 100 g-1 dw] ranged from 665.12 to 747.41, 1180.42 to 1319.47, 742.54 to 848.27 and 418.01 to 472.42 for orange, pomegranate, guava and mango nectars, respectively. The antioxidant capacity by DPPH method [μmol TE g-1 dw] ranged from (20.79 to 26.51), (47.13 to 56.56), (60.68 to 69.25) and (8.39 to 13.32) for orange, pomegranate, guava and mango nectars, respectively. Total carotenoids [mg 100 g-1 dw] were the highest in mango nectars ranged from (102.99 to 110.52) in mango nectar with 100% sugar and mango nectar with 100% stevioside, respectively. Anthocyanins content recorded 6.14 mg 100 g-1 dw in pomegranate nectar with 100% sugar, while increased to be 9.01 mg 00 g-1 dw in pomegranate nectar with 100% stevioside. Ascorbic acid [mg 100 g fw] ranged from 23.41 to 27.53, 15.73 to 18.32, 25.72 to 30.87 and 18.07 to 20.98 for orange, pomegranate, guava and mango nectars, respectively. The results of organoleptical attributes showed no effect of sugar substituting by stevioside on color, odor and mouth feel. The most dramatic effect of sugar substituting had been observed on taste, bitter after taste and the overall acceptability of prepared nectars with high substitution levels. Practically, using stevioside to produce low-calorie nectars was shown to be satisfactory up to 50% - 75% substituting level, resulting low-calorie nectars and could be applied commercially.
出处 《Food and Nutrition Sciences》 2017年第1期126-140,共15页 食品与营养科学(英文)
关键词 Low-Calorie Nectar CHEMICAL NUTRITIONAL Organoleptical CHARACTERISTICS Low-Calorie Nectar Chemical Nutritional Organoleptical Characteristics
  • 相关文献

参考文献1

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部