摘要
Fiber intake improves gut health and prevents non-communicable diseases. The current study investigates the substitution of carrageenan in white bread and evaluates its effect on the physiochemical and structural characteristics of bread. The 100% wheat flour was used as control and the test sample contained 4% carrageenan. The physio-chemical analysis showed that carrageenan-substitution improved the hydration properties of the flour (WHC—1.33 g/g;SC—3.50 ml/g). Carrageen substituted bread had reduced the loaf volume. The fiber content in carrageenan-substituted bread was noticeably higher (9.4 g%) than control (3.5 g%). Crude lipid (4.6 g%) and protein (7.0 g%) content improved with carrageenan-substitution. The mineral contents (Na, K, Mg, Ca, Fe, and Zn) were increased in carrageenan-breads. The texture profile analysis showed a decreased hardness (H1—92.3 N, H2—62.5 N) and improved springiness (5.3 mm) in carrageenan-bread.
Fiber intake improves gut health and prevents non-communicable diseases. The current study investigates the substitution of carrageenan in white bread and evaluates its effect on the physiochemical and structural characteristics of bread. The 100% wheat flour was used as control and the test sample contained 4% carrageenan. The physio-chemical analysis showed that carrageenan-substitution improved the hydration properties of the flour (WHC—1.33 g/g;SC—3.50 ml/g). Carrageen substituted bread had reduced the loaf volume. The fiber content in carrageenan-substituted bread was noticeably higher (9.4 g%) than control (3.5 g%). Crude lipid (4.6 g%) and protein (7.0 g%) content improved with carrageenan-substitution. The mineral contents (Na, K, Mg, Ca, Fe, and Zn) were increased in carrageenan-breads. The texture profile analysis showed a decreased hardness (H1—92.3 N, H2—62.5 N) and improved springiness (5.3 mm) in carrageenan-bread.