期刊文献+

Effect of Pre-Gelatinization Conditions on the Total Oxalate Content and Techno-Functional Properties of Taro (Colocasia esculenta) Flour

Effect of Pre-Gelatinization Conditions on the Total Oxalate Content and Techno-Functional Properties of Taro (Colocasia esculenta) Flour
下载PDF
导出
摘要 Like most roots and tubers, taro (Colocasia esculenta) corms have a short shelf-life due to the high moisture content, which aggravates their post-harvest losses. They also contain high amounts of calcium oxalates, limiting their use in food applications. To help add value and diversify the use of taro corms as well as curb food losses, various strategies have been proposed, such processing of the corms into flour. This study aimed at evaluating the total oxalate content and techno-functional properties of taro flour as affected by the pre-gelatinization conditions (i.e., method and time). Pre-gelatinized taro flour was prepared by subjecting peeled and cleaned taro corms to roasting (190°C), boiling (100°C), and steaming (100°C) for 10 min, 20 min and 30 min, respectively, for each method, followed by drying at 55°C and milling. Generally, all the properties of flour were significantly affected by the pre-gelatinization conditions (P 0.05). The total oxalate content of the pre-gelatinized taro flour ranged from 33.26 to 76.90 mg/100g. Pre-gelatinization by boiling significantly reduced the oxalate content (56.7%), while roasting resulted in the least reduction (36.2%). The flour colour i.e. L<sup>*</sup>, hue, and chroma ranged from 38.47° - 70.30°, 42.64° - 69.43°, and 7.78° - 10.58°, respectively. Roasting resulted in flour with the largest L<sup>*</sup> (70.30°) and hue angle (69.43°). Boiling also resulted in flour with the highest bulk density (BD) (0.86 g/cm<sup>3</sup>) and the lowest water solubility index (WSI) (9.39%). Steamed flour had the highest water absorption index (WAI) (3.81 g/g), water holding capacity (WHC) (4.59 g/g), and swelling capacity (SC) (4.86 g/g). This study shows that pre-gelatinization (i.e. by boiling, steaming or roasting) significantly affects the total oxalate content and techno-functional properties of taro flour, which in turn influences its use in other food applications thus increasing the utilization and production of taro simultaneously. Like most roots and tubers, taro (Colocasia esculenta) corms have a short shelf-life due to the high moisture content, which aggravates their post-harvest losses. They also contain high amounts of calcium oxalates, limiting their use in food applications. To help add value and diversify the use of taro corms as well as curb food losses, various strategies have been proposed, such processing of the corms into flour. This study aimed at evaluating the total oxalate content and techno-functional properties of taro flour as affected by the pre-gelatinization conditions (i.e., method and time). Pre-gelatinized taro flour was prepared by subjecting peeled and cleaned taro corms to roasting (190°C), boiling (100°C), and steaming (100°C) for 10 min, 20 min and 30 min, respectively, for each method, followed by drying at 55°C and milling. Generally, all the properties of flour were significantly affected by the pre-gelatinization conditions (P 0.05). The total oxalate content of the pre-gelatinized taro flour ranged from 33.26 to 76.90 mg/100g. Pre-gelatinization by boiling significantly reduced the oxalate content (56.7%), while roasting resulted in the least reduction (36.2%). The flour colour i.e. L<sup>*</sup>, hue, and chroma ranged from 38.47° - 70.30°, 42.64° - 69.43°, and 7.78° - 10.58°, respectively. Roasting resulted in flour with the largest L<sup>*</sup> (70.30°) and hue angle (69.43°). Boiling also resulted in flour with the highest bulk density (BD) (0.86 g/cm<sup>3</sup>) and the lowest water solubility index (WSI) (9.39%). Steamed flour had the highest water absorption index (WAI) (3.81 g/g), water holding capacity (WHC) (4.59 g/g), and swelling capacity (SC) (4.86 g/g). This study shows that pre-gelatinization (i.e. by boiling, steaming or roasting) significantly affects the total oxalate content and techno-functional properties of taro flour, which in turn influences its use in other food applications thus increasing the utilization and production of taro simultaneously.
作者 Irene R. Oyim Joseph O. Anyango Mary N. Omwamba Irene R. Oyim;Joseph O. Anyango;Mary N. Omwamba(Dairy, Food Science and Technology Department, Egerton University, Nakuru, Kenya)
机构地区 Dairy
出处 《Food and Nutrition Sciences》 2022年第6期511-525,共15页 食品与营养科学(英文)
关键词 Taro Flour Pre-Gelatinization Techno-Functional OXALATES Taro Flour Pre-Gelatinization Techno-Functional Oxalates
  • 相关文献

参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部