摘要
Forty four consecutive subjects aged 29-58 years (21 males and 23 females) with a clinical diagnosis of heterozygous familial hypercholesterolemia periodically treated every 30 days with LDL-apheresis for statin resistance, were enrolled in this study. A lipid profile was obtained immediately before starting LDL-apheresis, a second profile was obtained within four hours after LDL-apheresis. Chit activity and anti-oxLDL levels were determined with appropriate methods in all patients before and after LDL- apheresis. Total cholesterol, LDL-cholesterol, HDL- cholesterol and triglycerides decreased significantly after LDL-apheresis, while the variations of Chit activity and anti-oxLDL were not significant after LDL-apheresis. The correlation between Chit and total cholesterol was negative (r= –0.44 and –0.50 res- pectively) before and after LDL-apheresis as between Chit and LDL-cholesterol (r= –0.45 and –0.55 respectively). Anti-oxLDL concentration before and after LDL-apheresis positively correlated with Chit activity (r= 0.52 and r = 0.63 respectively), negatively with total cholesterol (r= –0.33 and r = –0.35 res- pectively) and with LDL (r = –0.32 and r = –0.21 respectively). We think that removing LDL with LDL-apheresis the anti-oxLDL/oxLDL ratio could increase and the excess of anti-oxLDL could induce macrophage activation through the surface Fc receptors. Alternatively with high levels of LDL- cholesterol, the deposition of foam cells represent the characteristic evolution of atherosclerosis process. Macrophage activation in the heterozygous familial hypercholesterolemia could represent an attempt for re-modeling the vessel wall, reducing the growth of lipid plaques.
Forty four consecutive subjects aged 29-58 years (21 males and 23 females) with a clinical diagnosis of heterozygous familial hypercholesterolemia periodically treated every 30 days with LDL-apheresis for statin resistance, were enrolled in this study. A lipid profile was obtained immediately before starting LDL-apheresis, a second profile was obtained within four hours after LDL-apheresis. Chit activity and anti-oxLDL levels were determined with appropriate methods in all patients before and after LDL- apheresis. Total cholesterol, LDL-cholesterol, HDL- cholesterol and triglycerides decreased significantly after LDL-apheresis, while the variations of Chit activity and anti-oxLDL were not significant after LDL-apheresis. The correlation between Chit and total cholesterol was negative (r= –0.44 and –0.50 res- pectively) before and after LDL-apheresis as between Chit and LDL-cholesterol (r= –0.45 and –0.55 respectively). Anti-oxLDL concentration before and after LDL-apheresis positively correlated with Chit activity (r= 0.52 and r = 0.63 respectively), negatively with total cholesterol (r= –0.33 and r = –0.35 res- pectively) and with LDL (r = –0.32 and r = –0.21 respectively). We think that removing LDL with LDL-apheresis the anti-oxLDL/oxLDL ratio could increase and the excess of anti-oxLDL could induce macrophage activation through the surface Fc receptors. Alternatively with high levels of LDL- cholesterol, the deposition of foam cells represent the characteristic evolution of atherosclerosis process. Macrophage activation in the heterozygous familial hypercholesterolemia could represent an attempt for re-modeling the vessel wall, reducing the growth of lipid plaques.