期刊文献+

Identification of microRNA precursors with new sequence-structure features

Identification of microRNA precursors with new sequence-structure features
下载PDF
导出
摘要 MicroRNAs are an important subclass of non-coding RNAs (ncRNA), and serve as main players into RNA interference (RNAi). Mature microRNA derived from stem-loop structure called precursor. Identification of precursor microRNA (pre-miRNA) is essential step to target microRNA in whole genome. The present work proposed 25 novel local features for identifying stem- loop structure of pre-miRNAs, which captures characteristics on both the sequence and structure. Firstly, we pulled the stem of hairpins and aligned the bases in bulges and internal loops used ‘―’, and then counted 24 base-pairs (‘AA’, ‘AU’, …, ‘―G’, except ‘――’) in pulled stem (formalized by length of pulled stem) as features vector of Support Vector Machine (SVM). Performances of three classifiers with our features and different kernels trained on human data were all superior to Triplet-SVM-classifier’s in po- sitive and negative testing data sets. Moreover, we achieved higher prediction accuracy through combining 7 global sequence-structure. The result indicates validity of novel local features. MicroRNAs are an important subclass of non-coding RNAs (ncRNA), and serve as main players into RNA interference (RNAi). Mature microRNA derived from stem-loop structure called precursor. Identification of precursor microRNA (pre-miRNA) is essential step to target microRNA in whole genome. The present work proposed 25 novel local features for identifying stem- loop structure of pre-miRNAs, which captures characteristics on both the sequence and structure. Firstly, we pulled the stem of hairpins and aligned the bases in bulges and internal loops used ‘―’, and then counted 24 base-pairs (‘AA’, ‘AU’, …, ‘―G’, except ‘――’) in pulled stem (formalized by length of pulled stem) as features vector of Support Vector Machine (SVM). Performances of three classifiers with our features and different kernels trained on human data were all superior to Triplet-SVM-classifier’s in po- sitive and negative testing data sets. Moreover, we achieved higher prediction accuracy through combining 7 global sequence-structure. The result indicates validity of novel local features.
机构地区 不详
出处 《Journal of Biomedical Science and Engineering》 2009年第8期626-631,共6页 生物医学工程(英文)
关键词 MICRORNA PRECURSOR MICRORNA Local FEATURES Pulled STEM STEM-LOOP SVM MicroRNA Precursor MicroRNA Local Features Pulled Stem Stem-Loop SVM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部