期刊文献+

Fingerprint image segmentation using modified fuzzy c-means algorithm 被引量:1

Fingerprint image segmentation using modified fuzzy c-means algorithm
下载PDF
导出
摘要 Fingerprint segmentation is a crucial step in fingerprint recognition system, and determines the results of fingerprint analysis and recognition. This paper proposes an efficient approach for fingerprint segmentation based on modified fuzzy c-means (FCM). The proposed method is realized by modifying the objective function in the Szilagyi’s algorithm via introducing histogram-based weight. Experimental results show that the proposed approach has an efficient performance while segmenting both original fingerprint image and fingerprint images corrupted by different type of noises. Fingerprint segmentation is a crucial step in fingerprint recognition system, and determines the results of fingerprint analysis and recognition. This paper proposes an efficient approach for fingerprint segmentation based on modified fuzzy c-means (FCM). The proposed method is realized by modifying the objective function in the Szilagyi’s algorithm via introducing histogram-based weight. Experimental results show that the proposed approach has an efficient performance while segmenting both original fingerprint image and fingerprint images corrupted by different type of noises.
机构地区 不详
出处 《Journal of Biomedical Science and Engineering》 2009年第8期656-660,共5页 生物医学工程(英文)
关键词 FINGERPRINT SEGMENTATION FUZZY C-MEANS HISTOGRAM ROBUSTNESS Fingerprint Segmentation Fuzzy C-means Histogram Robustness
  • 相关文献

参考文献2

二级参考文献19

  • 1陈真诚,张锋,蒋大宗,倪利莉,王红艳.利用多分辨率分析的胸部X线数字图像粗糙集滤波增强[J].中国生物医学工程学报,2004,23(6):486-489. 被引量:7
  • 2Zhexue Huang,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy Systems,August,1999,7(4):446-452.
  • 3Zhexue Huang.A fast clustering algorithm to cluster very large categorical data sets in data mining[A].Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].USA:ACM Press,1997.1-8.
  • 4Kononenko I.Estimating attributes:Analysis and extensions of Relief[A].Proceedings of the 7th European Conference on Machine Learning[C].Berlin:Springer,1994.171-182.
  • 5Kira K,Rendell L A.A practical approach to feature selection[A].Proceedings of the 9th International Workshop on Machine Leaning[C].San Francisco,CA:Morgan Kaufmann,1992.249-256.
  • 6Duda R O,Hart P E.Pattern classification and scene analysis[M].New York:John Wiley & Sons,1973.89-91.
  • 7Hathaway R J,Bezdek J C.Nerf C-means:Non-Euclidean relation fuzzy clustering[J].Pattern recognition,1994,27(3):429-437.
  • 8Michalski R S,Stepp R E.Automated construction of classifications:Conceptual clustering versus numerical taxonomy[J].IEEE PAMI,1983,5:396-410.
  • 9Jollois F X,Nadif M.Clustering large categorical data[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg:Springer-Verlag,2002.257-263.
  • 10SELIM S Z,ISMAIL M A.K-means type alogorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,6(1):81-87.

共引文献144

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部