摘要
In this study, finite element analysis was used to investigate the fatigue behavior of eight different hip stems. All of the prostheses investigated in the analysis are already being used in Turkish orthopaedic surgery. All stems were compared with each other in terms of fatigue, deformation and safety factors. Primary analysis was applied on three of the stems, which were tested experimentally. It was observed that the simulation and the experimental results are in good agreement with each other. After determining the reliability of the numerical method, the analysis was applied on all other stems. To obtain a more realistic simulation, boundary conditions were applied according to standards specified in the ISO 7206-4 standard. Three different types of materials were selected during analysis. These materials were Ti-6Al-4V, cobalt chrome alloy and 316L. Minimum fatigue cycles, critical fatigue areas, stresses and safety factor values have been identified. The results obtained from the finite element analysis showed that all stems were safe enough in terms of fatigue life. As a result of fatigue analysis, all stems have been found to be successful, but some of them were found to be better than the others in terms of safety factor. The current study has also demonstrated that analysing hip stems with the finite element method (FEM) can be applied with confidence to support standard fatigue testing and used as an alternative. Further studies can expand the simulations to the clinical relevance due to complex physical relevance.
In this study, finite element analysis was used to investigate the fatigue behavior of eight different hip stems. All of the prostheses investigated in the analysis are already being used in Turkish orthopaedic surgery. All stems were compared with each other in terms of fatigue, deformation and safety factors. Primary analysis was applied on three of the stems, which were tested experimentally. It was observed that the simulation and the experimental results are in good agreement with each other. After determining the reliability of the numerical method, the analysis was applied on all other stems. To obtain a more realistic simulation, boundary conditions were applied according to standards specified in the ISO 7206-4 standard. Three different types of materials were selected during analysis. These materials were Ti-6Al-4V, cobalt chrome alloy and 316L. Minimum fatigue cycles, critical fatigue areas, stresses and safety factor values have been identified. The results obtained from the finite element analysis showed that all stems were safe enough in terms of fatigue life. As a result of fatigue analysis, all stems have been found to be successful, but some of them were found to be better than the others in terms of safety factor. The current study has also demonstrated that analysing hip stems with the finite element method (FEM) can be applied with confidence to support standard fatigue testing and used as an alternative. Further studies can expand the simulations to the clinical relevance due to complex physical relevance.