期刊文献+

Robust estimation of stochastic gene-network systems

Robust estimation of stochastic gene-network systems
下载PDF
导出
摘要 Gene networks in biological systems are highly complicated because of their nonlinear and stochastic features. Network dynamics typically involve crosstalk mechanism and they may suffer from corruption due to intrinsic and extrinsic stochastic molecular noises. Filtering noises in gene networks using biological techniques accompanied with a systematic strategy is thus an attractive topic. However, most states of biological systems are not directly accessible. In practice, these immeasurable states can only be predicted based on the measurement output. In the lab experiment, green fluorescent protein (GFP) is commonly adopted as the reporter protein since it is able to reflect intensity of the gene expression. On this basis, this study considers a nonlinear stochastic model to describe the stochastic gene networks and shows that robust state estimation using Kalman filtering techniques is possible. Stability of the robust estimation scheme is analyzed based on the Ito’s theorem and Lyapunov stability theory. Numerical examples in silico are illustrated to confirm performance of the proposed design. Gene networks in biological systems are highly complicated because of their nonlinear and stochastic features. Network dynamics typically involve crosstalk mechanism and they may suffer from corruption due to intrinsic and extrinsic stochastic molecular noises. Filtering noises in gene networks using biological techniques accompanied with a systematic strategy is thus an attractive topic. However, most states of biological systems are not directly accessible. In practice, these immeasurable states can only be predicted based on the measurement output. In the lab experiment, green fluorescent protein (GFP) is commonly adopted as the reporter protein since it is able to reflect intensity of the gene expression. On this basis, this study considers a nonlinear stochastic model to describe the stochastic gene networks and shows that robust state estimation using Kalman filtering techniques is possible. Stability of the robust estimation scheme is analyzed based on the Ito’s theorem and Lyapunov stability theory. Numerical examples in silico are illustrated to confirm performance of the proposed design.
出处 《Journal of Biomedical Science and Engineering》 2013年第2期213-222,共10页 生物医学工程(英文)
关键词 BIOLOGICAL System STOCHASTIC Model STABILITY Estimation Biological System Stochastic Model Stability Estimation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部