摘要
The tapered angles of an artery significantly influence the local hemodynamics. However, as gravity is considered, little is known about the effect of tapered angles on the hemodynamics. In this study, we explored whether the effect of tapered angles on the distribution of blood flow pressure (DBFP) differed with gravity considered or not. Numerical simulations of the DBFP in a single vessel were performed based on such tapered angles as 0°, 0.5° and 1°. In the model used for simulation, gravity was introduced as a body force. We obtained the following simulations: i) The larger the tapered angles were, the better distributed the blood flow pressure;ii) The tapered effect was an important factor leading to nonlinearity in blood flow pressure;iii) Gravity affected DBFP coupling with the tapered angles, yet independently influenced the dimension of the DBFP. At the same time, the effective intensity of gravity decreased with the increase of tapered angles.
The tapered angles of an artery significantly influence the local hemodynamics. However, as gravity is considered, little is known about the effect of tapered angles on the hemodynamics. In this study, we explored whether the effect of tapered angles on the distribution of blood flow pressure (DBFP) differed with gravity considered or not. Numerical simulations of the DBFP in a single vessel were performed based on such tapered angles as 0°, 0.5° and 1°. In the model used for simulation, gravity was introduced as a body force. We obtained the following simulations: i) The larger the tapered angles were, the better distributed the blood flow pressure;ii) The tapered effect was an important factor leading to nonlinearity in blood flow pressure;iii) Gravity affected DBFP coupling with the tapered angles, yet independently influenced the dimension of the DBFP. At the same time, the effective intensity of gravity decreased with the increase of tapered angles.