期刊文献+

Dynamic Contrast-Enhanced MRI of Mouse Liver: A Feasibility Study Using a Dual-Input Two-Compartment Tracer Kinetic Model

Dynamic Contrast-Enhanced MRI of Mouse Liver: A Feasibility Study Using a Dual-Input Two-Compartment Tracer Kinetic Model
下载PDF
导出
摘要 Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been widely applied to evaluate microcirculatory parameters in clinical settings. However, pre-clinical studies involving DCE-MRI of small animals remain challenging with the requirement for high spatial and temporal resolution for quantitative tracer kinetic analysis. This study illustrates the feasibility of applying a high temporal resolution (2 s) protocol for liver imaging in mice by analyzing the DCE-MRI datasets of mice liver with a dual-input two-compartment tracer kinetic model. Phantom studies were performed to validate the T1 estimates derived by the proposed protocol before applying it in mice studies. The DCE-MRI datasets of mice liver were amendable to tracer kinetic analysis using a dual-input two-compartment model. Estimated micro-circulatory parameters were consistent with liver physiology, indicating viability of applying the technique for pre-clinical drug developments. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been widely applied to evaluate microcirculatory parameters in clinical settings. However, pre-clinical studies involving DCE-MRI of small animals remain challenging with the requirement for high spatial and temporal resolution for quantitative tracer kinetic analysis. This study illustrates the feasibility of applying a high temporal resolution (2 s) protocol for liver imaging in mice by analyzing the DCE-MRI datasets of mice liver with a dual-input two-compartment tracer kinetic model. Phantom studies were performed to validate the T1 estimates derived by the proposed protocol before applying it in mice studies. The DCE-MRI datasets of mice liver were amendable to tracer kinetic analysis using a dual-input two-compartment model. Estimated micro-circulatory parameters were consistent with liver physiology, indicating viability of applying the technique for pre-clinical drug developments.
出处 《Journal of Biomedical Science and Engineering》 2015年第2期90-97,共8页 生物医学工程(英文)
关键词 DCE-MRI Mouse Liver IMAGING PRECLINICAL IMAGING DCE-MRI Mouse Liver Imaging Preclinical Imaging
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部