摘要
In ring spinning, tension develops in the yarn mainly because, to move the Traveler and the balloon length, Lb, around the spindle axis, and to wind the yarn onto the spinning bobbin, work must be done against the frictional force of the ring on the Traveler and of the Traveler on the yarn, as well as against the air drag on the Traveler and on the balloon length. This work is additional to that needed to overcome the friction of the spindle bearings and the air drag on the forming yarn package. The tensions in the yarn during ring spinning may be considered with respect to three zones: 1) the yarn formation zone (i.e., the zone between the pigtail lappet guide and the front rollers of the drafting system);2) the winding zone (i.e., the zone between the Traveler and the bobbin forming zone);3) the balloon zone (i.e., the zone between the Traveler and lappet guide), where the yarn tension changes noticeable shape by relation with Winding Qatar (the yarn tension increases whenever Winding Qatar reduces).
In ring spinning, tension develops in the yarn mainly because, to move the Traveler and the balloon length, Lb, around the spindle axis, and to wind the yarn onto the spinning bobbin, work must be done against the frictional force of the ring on the Traveler and of the Traveler on the yarn, as well as against the air drag on the Traveler and on the balloon length. This work is additional to that needed to overcome the friction of the spindle bearings and the air drag on the forming yarn package. The tensions in the yarn during ring spinning may be considered with respect to three zones: 1) the yarn formation zone (i.e., the zone between the pigtail lappet guide and the front rollers of the drafting system);2) the winding zone (i.e., the zone between the Traveler and the bobbin forming zone);3) the balloon zone (i.e., the zone between the Traveler and lappet guide), where the yarn tension changes noticeable shape by relation with Winding Qatar (the yarn tension increases whenever Winding Qatar reduces).