期刊文献+

Developing an Evolutionary Algorithm to Search for an Optimal Multi-Mother Wavelet Packets Combination

Developing an Evolutionary Algorithm to Search for an Optimal Multi-Mother Wavelet Packets Combination
下载PDF
导出
摘要 The wavelet transform is a popular analysis tool for non-stationary data, but in many cases, the choice of the mother wavelet and basis set remains uncertain, particularly when dealing with physiological data. Furthermore, the possibility exists for combining information from numerous mother wavelets so as to exploit different features from the data. However, the combinatorics become daunting given the large number of basis sets that can be utilized. Recent work in evolutionary computation has produced a subset selection genetic algorithm specifically aimed at the discovery of small, high-performance, subsets from among a large pool of candidates. Our aim was to apply this algorithm to the task of locating subsets of packets from multiple mother wavelet decompositions to estimate cardiac output from chest wall motions while avoiding the computational cost of full signal reconstruction. We present experiments which show how a continuous assessment metric can be extracted from the wavelets coefficients, but the dual-objective nature of the algorithm (high accuracy with small feature sets) imposes a need to restrict the sensitivity of the continuous accuracy metric in order to achieve the small subset size desired. A possibly subtle tradeoff seems to be needed to meet the dual objectives. The wavelet transform is a popular analysis tool for non-stationary data, but in many cases, the choice of the mother wavelet and basis set remains uncertain, particularly when dealing with physiological data. Furthermore, the possibility exists for combining information from numerous mother wavelets so as to exploit different features from the data. However, the combinatorics become daunting given the large number of basis sets that can be utilized. Recent work in evolutionary computation has produced a subset selection genetic algorithm specifically aimed at the discovery of small, high-performance, subsets from among a large pool of candidates. Our aim was to apply this algorithm to the task of locating subsets of packets from multiple mother wavelet decompositions to estimate cardiac output from chest wall motions while avoiding the computational cost of full signal reconstruction. We present experiments which show how a continuous assessment metric can be extracted from the wavelets coefficients, but the dual-objective nature of the algorithm (high accuracy with small feature sets) imposes a need to restrict the sensitivity of the continuous accuracy metric in order to achieve the small subset size desired. A possibly subtle tradeoff seems to be needed to meet the dual objectives.
出处 《Journal of Biomedical Science and Engineering》 2015年第7期458-470,共13页 生物医学工程(英文)
关键词 WAVELET TRANSFORM Data Mining GENETIC Algorithm Wavelet Transform Data Mining Genetic Algorithm
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部