期刊文献+

Influence of Supporting Tissue on the Deformation and Compliance of Healthy and Diseased Arteries

Influence of Supporting Tissue on the Deformation and Compliance of Healthy and Diseased Arteries
下载PDF
导出
摘要 Hemodynamics and the interaction between the components of the cardiovascular system are complex and involve a structural/fluid flow interaction. During the cardiac cycle, changes to vascular pressure induce a compliant response in the vessels as they cyclically stretch and relax. The compliance influences the fluid flow throughout the system. The interaction is influenced by the disease state of the artery, and in particular, a plaque layer can reduce the compliance. In order to properly quantify the fluid-structural response, it is essential to consider whether the tissue surrounding the artery provides a support to the vessel wall. Here, a series of calculations are provided to determine what role the supporting tissue plays in the vessel wall and how much tissue must be included to properly carry out future fluid-structure calculations. Additionally, we calculate the sensitivity of the compliance to material properties such as the Young’s modulus or to the transmural pressure difference. Hemodynamics and the interaction between the components of the cardiovascular system are complex and involve a structural/fluid flow interaction. During the cardiac cycle, changes to vascular pressure induce a compliant response in the vessels as they cyclically stretch and relax. The compliance influences the fluid flow throughout the system. The interaction is influenced by the disease state of the artery, and in particular, a plaque layer can reduce the compliance. In order to properly quantify the fluid-structural response, it is essential to consider whether the tissue surrounding the artery provides a support to the vessel wall. Here, a series of calculations are provided to determine what role the supporting tissue plays in the vessel wall and how much tissue must be included to properly carry out future fluid-structure calculations. Additionally, we calculate the sensitivity of the compliance to material properties such as the Young’s modulus or to the transmural pressure difference.
出处 《Journal of Biomedical Science and Engineering》 2015年第8期490-499,共10页 生物医学工程(英文)
关键词 Fluid-Structural Interaction BLOOD Flow Compliant VESSELS Finite Element Analysis Fluid-Structural Interaction Blood Flow Compliant Vessels Finite Element Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部