期刊文献+

Thermal Fluctuation Induced Piezoelectric Effect in Cytoskeletal Microtubules: Model for Energy Harvesting and Their Intracellular Communication

Thermal Fluctuation Induced Piezoelectric Effect in Cytoskeletal Microtubules: Model for Energy Harvesting and Their Intracellular Communication
下载PDF
导出
摘要 Cytoskeletal microtubules have long been conjectured to have piezoelectric properties. They have been shown to behave as nematic liquid crystals which oscillate along their director axis due to the prevalent thermal fluctuations. In this work, we develop a theoretical model of the mechanics of microtubules in the cytosolic space based on the buckling of its structure due to these thermal fluctuations. This cytosolic space has been considered as a viscoelastic medium in which microtubule oscillations have been considered. As a result of resilience of cytosol and neighbouring filaments from the axial force due to thermal fluctuations, the surface traction acting laterally on the microtubule structure has been further used to elucidate its piezoelectric behaviour in vivo. After the piezoelectric properties induced by thermal fluctuations (in addition to the buckling) of microtubules have been discussed, we propose a model discussing how microtubules behave as energy harvesters and communicate via electromagnetic radiation, with each other, in an intracellular environment. Cytoskeletal microtubules have long been conjectured to have piezoelectric properties. They have been shown to behave as nematic liquid crystals which oscillate along their director axis due to the prevalent thermal fluctuations. In this work, we develop a theoretical model of the mechanics of microtubules in the cytosolic space based on the buckling of its structure due to these thermal fluctuations. This cytosolic space has been considered as a viscoelastic medium in which microtubule oscillations have been considered. As a result of resilience of cytosol and neighbouring filaments from the axial force due to thermal fluctuations, the surface traction acting laterally on the microtubule structure has been further used to elucidate its piezoelectric behaviour in vivo. After the piezoelectric properties induced by thermal fluctuations (in addition to the buckling) of microtubules have been discussed, we propose a model discussing how microtubules behave as energy harvesters and communicate via electromagnetic radiation, with each other, in an intracellular environment.
出处 《Journal of Biomedical Science and Engineering》 2015年第8期511-519,共9页 生物医学工程(英文)
关键词 PIEZOELECTRICITY CYTOSKELETAL MICROTUBULES INTRACELLULAR Communication BUCKLING Thermal FLUCTUATIONS Piezoelectricity Cytoskeletal Microtubules Intracellular Communication Buckling Thermal Fluctuations
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部