期刊文献+

Photo Acoustic Thermal for Human Bone Characterization: A Feasibility Study

Photo Acoustic Thermal for Human Bone Characterization: A Feasibility Study
下载PDF
导出
摘要 The possible features of photo acoustic tomography (PAT) in medical research and practice, including applications in orthopedics and cardiovascular areas, among others, have motivated the emphasis of this study towards human bone applications. PAT modality is an emerging approach that features safety and greater penetration depth compared to other modalities such as X-ray and microwave. The high-resolution images and safety related to PAT modality are attributed to the scattering properties of ultrasound as compared to light within a human tissue. PAT brought considerable attention from the medical research community to target optimum parameters for practical models. It includes source frequency penetration depth, dynamic temperature responses, and acoustic pressure throughout the multilayer structure of the human tissues. In this work, the acoustic pressure and the bio-heat equations were analyzed for power distribution and penetration depth, covering the basic principles of PAT within the human body. Three sources with three dif-ferent heat energy pulses;1 s, 3 s, and 5 s, were considered in order to study the rise time and fall time dynamic responses inside the bone material. The computer simulation was designed to simu-late the human tissue at 1 MHz with an acoustic pressure of 1 MPa. A penetration depth for all sources was estimated to be near 4 cm with a temperature change from 0.5 K to near 1 K over a pe-riod of 10 s. The simulation data provide promising results when taken to the next level of practical implementation. The 4 cm penetration depth range may enable the researchers to investigate mul-tiple layers within the human body, leading to non-invasive deterministic approach. The simulation presented here will serve as a pilot study towards photoacoustic applications in orthopedic applica-tions. The possible features of photo acoustic tomography (PAT) in medical research and practice, including applications in orthopedics and cardiovascular areas, among others, have motivated the emphasis of this study towards human bone applications. PAT modality is an emerging approach that features safety and greater penetration depth compared to other modalities such as X-ray and microwave. The high-resolution images and safety related to PAT modality are attributed to the scattering properties of ultrasound as compared to light within a human tissue. PAT brought considerable attention from the medical research community to target optimum parameters for practical models. It includes source frequency penetration depth, dynamic temperature responses, and acoustic pressure throughout the multilayer structure of the human tissues. In this work, the acoustic pressure and the bio-heat equations were analyzed for power distribution and penetration depth, covering the basic principles of PAT within the human body. Three sources with three dif-ferent heat energy pulses;1 s, 3 s, and 5 s, were considered in order to study the rise time and fall time dynamic responses inside the bone material. The computer simulation was designed to simu-late the human tissue at 1 MHz with an acoustic pressure of 1 MPa. A penetration depth for all sources was estimated to be near 4 cm with a temperature change from 0.5 K to near 1 K over a pe-riod of 10 s. The simulation data provide promising results when taken to the next level of practical implementation. The 4 cm penetration depth range may enable the researchers to investigate mul-tiple layers within the human body, leading to non-invasive deterministic approach. The simulation presented here will serve as a pilot study towards photoacoustic applications in orthopedic applica-tions.
作者 James Rizkalla Vinay Kumar Suryadevara Ashok Kumar Thella Ahdy Helmy Paul Salama Maher E. Rizkalla James Rizkalla;Vinay Kumar Suryadevara;Ashok Kumar Thella;Ahdy Helmy;Paul Salama;Maher E. Rizkalla(Indiana University School of Medicine, Indianapolis, IN, USA;Electrical and Computer Engineering, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA;Integrated Nanosystems Development Institute (INDI), Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA)
出处 《Journal of Biomedical Science and Engineering》 2016年第9期445-449,共5页 生物医学工程(英文)
关键词 Photoacoustic Tomography PAT PA ORTHO COMSOL Photoacoustic Tomography PAT PA Ortho COMSOL
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部