期刊文献+

Feature Optimization of Speech Emotion Recognition

Feature Optimization of Speech Emotion Recognition
下载PDF
导出
摘要 Speech emotion is divided into four categories, Fear, Happy, Neutral and Surprise in this paper. Traditional features and their statistics are generally applied to recognize speech emotion. In order to quantify each feature’s contribution to emotion recogni-tion, a method based on the Back Propagation (BP) neural network is adopted. Then we can obtain the optimal subset of the features. What’s more, two new characteristics of speech emotion, MFCC feature extracted from the fundamental frequency curve (MFCCF0) and amplitude perturbation parameters extracted from the short- time av-erage magnitude curve (APSAM), are added to the selected features. With the Gaus-sian Mixture Model (GMM), we get the highest average recognition rate of the four emotions 82.25%, and the recognition rate of Neutral 90%. Speech emotion is divided into four categories, Fear, Happy, Neutral and Surprise in this paper. Traditional features and their statistics are generally applied to recognize speech emotion. In order to quantify each feature’s contribution to emotion recogni-tion, a method based on the Back Propagation (BP) neural network is adopted. Then we can obtain the optimal subset of the features. What’s more, two new characteristics of speech emotion, MFCC feature extracted from the fundamental frequency curve (MFCCF0) and amplitude perturbation parameters extracted from the short- time av-erage magnitude curve (APSAM), are added to the selected features. With the Gaus-sian Mixture Model (GMM), we get the highest average recognition rate of the four emotions 82.25%, and the recognition rate of Neutral 90%.
作者 Chunxia Yu Ling Xie Weiping Hu Chunxia Yu;Ling Xie;Weiping Hu(GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China)
出处 《Journal of Biomedical Science and Engineering》 2016年第10期37-43,共8页 生物医学工程(英文)
关键词 Speech Emotion Recognition Feature Selection Feature Extraction BP Neural Network GMM Speech Emotion Recognition Feature Selection Feature Extraction BP Neural Network GMM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部