摘要
To classify DNA sequences, k-mer frequency is widely used since it can convert variable-length sequences into fixed-length and numerical feature vectors. However, in case of fixed-length DNA sequence classification, subsequences starting at a specific position of the given sequence can also be used as categorical features. Through the performance evaluation on six datasets of fixed-length DNA sequences, our algorithm based on the above idea achieved comparable or better performance than other state-of-the art algorithms.
To classify DNA sequences, k-mer frequency is widely used since it can convert variable-length sequences into fixed-length and numerical feature vectors. However, in case of fixed-length DNA sequence classification, subsequences starting at a specific position of the given sequence can also be used as categorical features. Through the performance evaluation on six datasets of fixed-length DNA sequences, our algorithm based on the above idea achieved comparable or better performance than other state-of-the art algorithms.