期刊文献+

Discovery of Novel Irreversible HER2 Inhibitors for Breast Cancer Treatment

Discovery of Novel Irreversible HER2 Inhibitors for Breast Cancer Treatment
下载PDF
导出
摘要 It has been widely known that human epidermal growth factor receptor 2 (HER2) inhibitors exhibit distinct antitumor responses against HER2-positive breast cancer. To date, Lapatinib (Tykerb®) has been approved by the U.S. Food and Drug Administration (FDA) as a reversible HER2 inhibitor for treating breast cancer. However, HER2 L755S, T798I and T798M mutations confer drug resistance to lapatinib, restricting its efficacy toward HER2-positive breast cancer. Thus, novel therapy toward mutant HER2 is highly desired. Although several irreversible HER2 inhibitors have been developed to overcome these drug resistance problems, most of them were reported to cause severe side effects. In this study, three pharmacophore models based on HER2 L755S, T798I and T798M mutant structures were constructed and then validated through receiver operating characteristic (ROC) curve analysis and Güner-Henry (GH) scoring methods. Subsequently, these well-validated models were utilized as 3D queries to identify novel irreversible HER2 inhibitors from National Cancer Institute (NCI) database. Finally, two potential irreversible HER2 inhibitor candidates, NSC278329 and NSC718305, were identified and validated through molecular docking, molecular dynamics (MD) simulations and ADMET prediction. Furthermore, the analyses of binding modes showed that both NSC278329 and NSC718305 exhibit good binding interactions with HER2 L755S, T798I and T798M mutants. All together, the above results suggest that both NSC278329 and NSC718305 can serve as novel and effective irreversible HER2 inhibitors for treating breast cancers with HER2 L755S, T798I and T798M mutants. In addition, they may act as lead compounds for designing new irreversible HER2 inhibitors by carrying out structural modifications and optimizations in future studies. It has been widely known that human epidermal growth factor receptor 2 (HER2) inhibitors exhibit distinct antitumor responses against HER2-positive breast cancer. To date, Lapatinib (Tykerb®) has been approved by the U.S. Food and Drug Administration (FDA) as a reversible HER2 inhibitor for treating breast cancer. However, HER2 L755S, T798I and T798M mutations confer drug resistance to lapatinib, restricting its efficacy toward HER2-positive breast cancer. Thus, novel therapy toward mutant HER2 is highly desired. Although several irreversible HER2 inhibitors have been developed to overcome these drug resistance problems, most of them were reported to cause severe side effects. In this study, three pharmacophore models based on HER2 L755S, T798I and T798M mutant structures were constructed and then validated through receiver operating characteristic (ROC) curve analysis and Güner-Henry (GH) scoring methods. Subsequently, these well-validated models were utilized as 3D queries to identify novel irreversible HER2 inhibitors from National Cancer Institute (NCI) database. Finally, two potential irreversible HER2 inhibitor candidates, NSC278329 and NSC718305, were identified and validated through molecular docking, molecular dynamics (MD) simulations and ADMET prediction. Furthermore, the analyses of binding modes showed that both NSC278329 and NSC718305 exhibit good binding interactions with HER2 L755S, T798I and T798M mutants. All together, the above results suggest that both NSC278329 and NSC718305 can serve as novel and effective irreversible HER2 inhibitors for treating breast cancers with HER2 L755S, T798I and T798M mutants. In addition, they may act as lead compounds for designing new irreversible HER2 inhibitors by carrying out structural modifications and optimizations in future studies.
出处 《Journal of Biomedical Science and Engineering》 2019年第4期225-244,共20页 生物医学工程(英文)
关键词 BREAST Cancer IRREVERSIBLE HER2 INHIBITORS STRUCTURE-BASED PHARMACOPHORE Modeling Molecular DOCKING Mo-lecular Dynamics Simulation Breast Cancer Irreversible HER2 Inhibitors Structure-Based Pharmacophore Modeling Molecular Docking Mo-lecular Dynamics Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部