摘要
<div style="text-align:justify;"> <span style="font-family:Verdana;">Recovering from multiple traumatic brain injury (TBI) is a very difficult task, depending on the severity of the lesions, the affected parts of the brain and the level of damage (locomotor, cognitive or sensory). Although there are some software platforms to help these patients to recover part of the lost capacity, the variety of existing lesions and the different degree to which they affect the patient, do not allow the generalization of the appropriate treatments and tools in each case. The aim of this work is to design and evaluate a machine vision-based UI (User Interface) allowing patients with a high level of injury to interact with a computer. This UI will be a tool for the therapy they follow and a way to communicate with their environment. The interface provides a set of specific activities, developed in collaboration with the multidisciplinary team that is currently evaluating each patient, to be used as a part of the therapy they receive. The system has been successfully tested with two patients whose degree of disability prevents them from using other types of platforms.</span> </div>
<div style="text-align:justify;"> <span style="font-family:Verdana;">Recovering from multiple traumatic brain injury (TBI) is a very difficult task, depending on the severity of the lesions, the affected parts of the brain and the level of damage (locomotor, cognitive or sensory). Although there are some software platforms to help these patients to recover part of the lost capacity, the variety of existing lesions and the different degree to which they affect the patient, do not allow the generalization of the appropriate treatments and tools in each case. The aim of this work is to design and evaluate a machine vision-based UI (User Interface) allowing patients with a high level of injury to interact with a computer. This UI will be a tool for the therapy they follow and a way to communicate with their environment. The interface provides a set of specific activities, developed in collaboration with the multidisciplinary team that is currently evaluating each patient, to be used as a part of the therapy they receive. The system has been successfully tested with two patients whose degree of disability prevents them from using other types of platforms.</span> </div>
作者
Sergio Martínez
Antonio Peñalver
Juan Manuel Sáez
Sergio Martínez;Antonio Peñalver;Juan Manuel Sáez(Department of Computer Science and Artificial Intelligence, University of Alicante, Alicante, Spain;Center of Operations Research, Miguel Hernández University, Elche, Spain)