期刊文献+

Microtubule Biomechanical Properties under Deformation and Vibration

Microtubule Biomechanical Properties under Deformation and Vibration
下载PDF
导出
摘要 Microtubules (MT) are of great engineering importance due to their potential applications as sensors, actuators, drug delivery, and others. The MT properties/mechanics are greatly affected by their biomechanical environment and it is important to understand their biological function. Although microtubule mechanics has been extensively studied statically, very limited studies are devoted to the biomechanical properties of microtubule undergoing deformation and vibration. In this study, we investigate the biomechanical properties of the microtubule under bending deformation and free vibration using 3D finite element analysis. Results of force-deformation and vibration frequencies and mode shapes obtained from the finite element analysis are presented. The results indicate that the force-deformation characteristics vary with time/phases and become non-linear at higher time intervals. The modes of MT vibration and frequencies are in the GHz range and higher modes will involve combined bending, torsion and axial deformations. These higher modes and shapes change their deformation which might have implications for physiological and biological behavior, especially for sensing and actuation and communication to cells. The bending force-deformation characteristics and vibration modes and frequencies should help further understand the biomechanical properties of self-assembled microtubules. Microtubules (MT) are of great engineering importance due to their potential applications as sensors, actuators, drug delivery, and others. The MT properties/mechanics are greatly affected by their biomechanical environment and it is important to understand their biological function. Although microtubule mechanics has been extensively studied statically, very limited studies are devoted to the biomechanical properties of microtubule undergoing deformation and vibration. In this study, we investigate the biomechanical properties of the microtubule under bending deformation and free vibration using 3D finite element analysis. Results of force-deformation and vibration frequencies and mode shapes obtained from the finite element analysis are presented. The results indicate that the force-deformation characteristics vary with time/phases and become non-linear at higher time intervals. The modes of MT vibration and frequencies are in the GHz range and higher modes will involve combined bending, torsion and axial deformations. These higher modes and shapes change their deformation which might have implications for physiological and biological behavior, especially for sensing and actuation and communication to cells. The bending force-deformation characteristics and vibration modes and frequencies should help further understand the biomechanical properties of self-assembled microtubules.
作者 Ramana Pidaparti Jongwon Kim Ramana Pidaparti;Jongwon Kim(College of Engineering, University of Georgia, Athens, USA;Department of Radiation Oncology, University of Arizona, Tucson, USA)
出处 《Journal of Biomedical Science and Engineering》 2022年第1期36-43,共8页 生物医学工程(英文)
关键词 MICROTUBULE VIBRATION DEFORMATION Finite Element Method Biomechanical Properties Microtubule Vibration Deformation Finite Element Method Biomechanical Properties
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部