摘要
Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the feasibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was carried out by immersing the bamboo in KOH (12% and 8% w/w bamboo) solutions and exposing the slurry to microwave radiation power of 400 W for 30min. Chemical composition of the pretreated substrates and spent liquor was analyzed. Pretreated substrates were enzymatic hydrolyzed, and glucose and xylose in the hydrolysate were analyzed. The results showed that the pretreated substrate with microwave assisted KOH had significantly higher sugar yield than the untreated samples. The fermentation inhibitors formic acid, furfural, HMF and levulinic acid were much lower than acid pretreatment reported.
Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the feasibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was carried out by immersing the bamboo in KOH (12% and 8% w/w bamboo) solutions and exposing the slurry to microwave radiation power of 400 W for 30min. Chemical composition of the pretreated substrates and spent liquor was analyzed. Pretreated substrates were enzymatic hydrolyzed, and glucose and xylose in the hydrolysate were analyzed. The results showed that the pretreated substrate with microwave assisted KOH had significantly higher sugar yield than the untreated samples. The fermentation inhibitors formic acid, furfural, HMF and levulinic acid were much lower than acid pretreatment reported.