摘要
We analyze the phenomenon of semiquantum chaos in the classically regular triple well model from classical to quantum. His dynamics is very rich because it provides areas of regular be-havior, chaotic ones and multiple quantum tun-neling depending on the energy of the system as the Planck’s constant varies from 0 to 1. The Time Dependent Variational Principle TDVP using generalized Gaussian trial wave function, which, in many-body theory leads to the Hartree Fock Approximation TDHF, is added to the tech-niques of Gaussian effective potentials and both are used to study the system. The extended classical system with fluctuation variables non- linearly coupled to the average variables exhibit energy dependent transitions between regular behavior and semi quantum chaos monitored by bifurcation diagram together with some numerical indicators.
We analyze the phenomenon of semiquantum chaos in the classically regular triple well model from classical to quantum. His dynamics is very rich because it provides areas of regular be-havior, chaotic ones and multiple quantum tun-neling depending on the energy of the system as the Planck’s constant varies from 0 to 1. The Time Dependent Variational Principle TDVP using generalized Gaussian trial wave function, which, in many-body theory leads to the Hartree Fock Approximation TDHF, is added to the tech-niques of Gaussian effective potentials and both are used to study the system. The extended classical system with fluctuation variables non- linearly coupled to the average variables exhibit energy dependent transitions between regular behavior and semi quantum chaos monitored by bifurcation diagram together with some numerical indicators.