期刊文献+

Gamma-ray compton spectrum analysis to enhance medical imaging using wavelet transformation

Gamma-ray compton spectrum analysis to enhance medical imaging using wavelet transformation
下载PDF
导出
摘要 Cs-137 radioactive source with 661.7 keV gamma- ray energy and Am-241 with 59.5 keV gamma-ray energy were used to study the body structure of materials by examining transmitted gamma-ray spectrum using a scintillation detector, NaI(Tl). Due to specific characteristic properties of the medium, the passing Compton broad scattering spectrum contains valuable information. It is possible to mark and to specify the Compton spectrum caused by atomic specifications of Al, Cu, bone, muscle, and lipid as interactive materials. Wavelet transforms and other multi-scale analysis functions have been used for compact signal and image representations in de-noising, compression and feature detection processing problems for about twenty years. Comparing the transmitted spectra through muscle, bone and a tumor-like (fat) and analyzing each spectrum by wavelet analysis, the differences of the medium were shown. This study is devoted to use of wavelet transform for feature extraction associated with gamma spectrum, which corresponds to image pixel, and their classification in comparison with the Haar and Rbio3.1 transforms. Cs-137 radioactive source with 661.7 keV gamma- ray energy and Am-241 with 59.5 keV gamma-ray energy were used to study the body structure of materials by examining transmitted gamma-ray spectrum using a scintillation detector, NaI(Tl). Due to specific characteristic properties of the medium, the passing Compton broad scattering spectrum contains valuable information. It is possible to mark and to specify the Compton spectrum caused by atomic specifications of Al, Cu, bone, muscle, and lipid as interactive materials. Wavelet transforms and other multi-scale analysis functions have been used for compact signal and image representations in de-noising, compression and feature detection processing problems for about twenty years. Comparing the transmitted spectra through muscle, bone and a tumor-like (fat) and analyzing each spectrum by wavelet analysis, the differences of the medium were shown. This study is devoted to use of wavelet transform for feature extraction associated with gamma spectrum, which corresponds to image pixel, and their classification in comparison with the Haar and Rbio3.1 transforms.
机构地区 不详
出处 《Natural Science》 2011年第11期963-970,共8页 自然科学期刊(英文)
关键词 Wavelet HAAR Rbio3.1 COMPTON Scattering MATLAB Al Cu MUSCLE Bone LIPID Am-241 CS-137 Wavelet Haar Rbio3.1 Compton Scattering MATLAB Al Cu Muscle Bone Lipid Am-241 Cs-137
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部