期刊文献+

Prognostic properties of low-frequency seismic noise

Prognostic properties of low-frequency seismic noise
下载PDF
导出
摘要 The prognostic properties of four low-frequency seismic noise statistics are discussed: multi- fractal singularity spectrum support width, wavelet-based smoothness index of seismic noise waveforms, minimum normalized entropy of squared orthogonal wavelet coefficients and index of linear predictability. The proposed methods are illustrated by data analysis from broad-band seismic network F-net in Japan for more than 15 years of observation: since the beginning of 1997 up to 15 of May 2012. The previous analysis of multi-fractal properties of low-frequency seismic noise allowed a hypothesis about approaching Japan Islands to a future seismic catastrophe to be formulated at the middle of 2008. The base for such a hypothesis was statistically significant decreasing of multi-fractal singularity spectrum support width mean value. The peculiarities of correlation coefficient estimate within 1 year time window between median values of singularity spectra support width and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake. This prediction of Tohoku mega-earthquake, initially with estimate of lower magnitude as 8.3 only (at the middle of 2008) and further on with estimate of the time beginning of waiting earthquake (from the middle of 2010) was published in advance in a number of scientific articles and abstracts on international conferences. It is shown that other 3 statistics (except singularity spectrum support width) could extract seismically danger domains as well. The analysis of seismic noise data after Tohoku mega-earthquake indicates increasing of probability of the 2nd strong earthquake within the region where the north part of Philippine sea plate is approaching island Honshu (Nankai Trough). The prognostic properties of four low-frequency seismic noise statistics are discussed: multi- fractal singularity spectrum support width, wavelet-based smoothness index of seismic noise waveforms, minimum normalized entropy of squared orthogonal wavelet coefficients and index of linear predictability. The proposed methods are illustrated by data analysis from broad-band seismic network F-net in Japan for more than 15 years of observation: since the beginning of 1997 up to 15 of May 2012. The previous analysis of multi-fractal properties of low-frequency seismic noise allowed a hypothesis about approaching Japan Islands to a future seismic catastrophe to be formulated at the middle of 2008. The base for such a hypothesis was statistically significant decreasing of multi-fractal singularity spectrum support width mean value. The peculiarities of correlation coefficient estimate within 1 year time window between median values of singularity spectra support width and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake. This prediction of Tohoku mega-earthquake, initially with estimate of lower magnitude as 8.3 only (at the middle of 2008) and further on with estimate of the time beginning of waiting earthquake (from the middle of 2010) was published in advance in a number of scientific articles and abstracts on international conferences. It is shown that other 3 statistics (except singularity spectrum support width) could extract seismically danger domains as well. The analysis of seismic noise data after Tohoku mega-earthquake indicates increasing of probability of the 2nd strong earthquake within the region where the north part of Philippine sea plate is approaching island Honshu (Nankai Trough).
出处 《Natural Science》 2012年第8期659-666,共8页 自然科学期刊(英文)
关键词 SEISMIC Noise Mutifractal ANALYSIS Wavelet ANALYSIS SMOOTHNESS Index Entropy PREDICTABILITY Earthquake Prediction Seismic Noise Mutifractal Analysis Wavelet Analysis Smoothness Index Entropy Predictability Earthquake Prediction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部