期刊文献+

Fluid phases of argon: A debate on the absence of van der Waals’ “critical point”

Fluid phases of argon: A debate on the absence of van der Waals’ “critical point”
下载PDF
导出
摘要 A phase diagram of argon based upon percolation transition loci determined from literature experimental p-V isotherms, and simulation values using a Lennard-Jones model shows three fluid phases. The liquid phase spans all temperatures, from a metastable amorphous ground state at 0K, to ultra-high T. There is a supercritical mesophase bounded by percolation transition loci, and a gas phase. Intersection of two percolation loci in the p-T plane thermodynamically defines a critical line between two coexisting gas and liquid critical states at T = Tc, and the single mesophase for T > Tc. A debate on the absence of a van der Waals critical point in the Gibbs p-T density surface is appended. A phase diagram of argon based upon percolation transition loci determined from literature experimental p-V isotherms, and simulation values using a Lennard-Jones model shows three fluid phases. The liquid phase spans all temperatures, from a metastable amorphous ground state at 0K, to ultra-high T. There is a supercritical mesophase bounded by percolation transition loci, and a gas phase. Intersection of two percolation loci in the p-T plane thermodynamically defines a critical line between two coexisting gas and liquid critical states at T = Tc, and the single mesophase for T > Tc. A debate on the absence of a van der Waals critical point in the Gibbs p-T density surface is appended.
出处 《Natural Science》 2013年第2期194-206,共13页 自然科学期刊(英文)
关键词 CRITICAL Point SUPERCRITICAL FLUIDS Liquid Phase Critical Point Supercritical Fluids Liquid Phase
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部