期刊文献+

Removal of chromium from water effluent by adsorption onto <i>Vetiveria zizanioides</i>and <i>Anabaena</i>species

Removal of chromium from water effluent by adsorption onto <i>Vetiveria zizanioides</i>and <i>Anabaena</i>species
下载PDF
导出
摘要 Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, the present study on adsorption of Cr(VI) by activated Vetivera roots and Blue green algae Anabaena supports that it is an effective low cost adsorbent for the removal of Cr(VI) from plating effluent. Langmuir and Freundlich adsorption isotherm correlate the equilibrium adsorption data. In batch experiments both Vetiveria and Anabaena species were found to be cost effective biosorbent for the efficient removal of Cr(VI) from the effluent and comparatively Anabaena species was found to adsorb maximum Cr(VI) (88.86%) at a low contact time of 60 min. The data obtained from the experiments and modeling would prove useful in designing and fabricating an efficient treatment plant for Cr(VI) rich effluent. Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, the present study on adsorption of Cr(VI) by activated Vetivera roots and Blue green algae Anabaena supports that it is an effective low cost adsorbent for the removal of Cr(VI) from plating effluent. Langmuir and Freundlich adsorption isotherm correlate the equilibrium adsorption data. In batch experiments both Vetiveria and Anabaena species were found to be cost effective biosorbent for the efficient removal of Cr(VI) from the effluent and comparatively Anabaena species was found to adsorb maximum Cr(VI) (88.86%) at a low contact time of 60 min. The data obtained from the experiments and modeling would prove useful in designing and fabricating an efficient treatment plant for Cr(VI) rich effluent.
出处 《Natural Science》 2013年第3期341-348,共8页 自然科学期刊(英文)
关键词 Bioadsorption Vetiveria ANABAENA ADSORPTION ISOTHERM CHROMIUM Bioadsorption Vetiveria Anabaena Adsorption Isotherm Chromium
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部