期刊文献+

Liquid Pre-Freezing Percolation Transition to Equilibrium Crystal-in-Liquid Mesophase

Liquid Pre-Freezing Percolation Transition to Equilibrium Crystal-in-Liquid Mesophase
下载PDF
导出
摘要 Pre-freezing anomalies are explained by a percolation transition that delineates the existence of a pure equilibrium liquid state above the temperature of 1st-order freezing to the stable crystal phase. The precursor to percolation transitions are hetero-phase fluctuations that give rise to molecular clusters of an otherwise unstable state in the stable host phase. In-keeping with the Ostwald’s step rule, clusters of a crystalline state, closest in stability to the liquid, are the predominant structures in pre-freezing hetero-phase fluctuations. Evidence from changes in properties that depend upon density and energy fluctuations suggests embryonic nano-crystallites diverge in size and space at a percolation threshold, whence a colloidal-like equilibrium is stabilized by negative surface tension. Below this transition temperature, both crystal and liquid states percolate the phase volume in an equilibrium state of dispersed coexistence. We obtain a preliminary estimate of the prefreezing percolation line for water determined from higher-order discontinuities in Gibbs energy that derivatives the isothermal rigidity [(dp/dρ)T] and isochoric heat capacity [(dU/dT)v] respectively. The percolation temperature varies only slightly with pressure from 51.5°C at 0.1 MPa to around 60°C at 100 MPa. We conjecture that the predominant dispersed crystal structure is a tetrahedral ice, which is the closest of the higher-density ices (II to XV) to liquid water in configurational energy. Inspection of thermodynamic and transport properties of liquid argon also indicate the existence of a similar prefreezing percolation transition at ambient pressures (0.1 MPa) around 90 K, ~6% above the triple point (84 K). These findings account for many anomalous properties of equilibrium and supercooled liquids generally, and also explain Kauzmann’s “paradox” at a “glass” transition. Pre-freezing anomalies are explained by a percolation transition that delineates the existence of a pure equilibrium liquid state above the temperature of 1st-order freezing to the stable crystal phase. The precursor to percolation transitions are hetero-phase fluctuations that give rise to molecular clusters of an otherwise unstable state in the stable host phase. In-keeping with the Ostwald’s step rule, clusters of a crystalline state, closest in stability to the liquid, are the predominant structures in pre-freezing hetero-phase fluctuations. Evidence from changes in properties that depend upon density and energy fluctuations suggests embryonic nano-crystallites diverge in size and space at a percolation threshold, whence a colloidal-like equilibrium is stabilized by negative surface tension. Below this transition temperature, both crystal and liquid states percolate the phase volume in an equilibrium state of dispersed coexistence. We obtain a preliminary estimate of the prefreezing percolation line for water determined from higher-order discontinuities in Gibbs energy that derivatives the isothermal rigidity [(dp/dρ)T] and isochoric heat capacity [(dU/dT)v] respectively. The percolation temperature varies only slightly with pressure from 51.5°C at 0.1 MPa to around 60°C at 100 MPa. We conjecture that the predominant dispersed crystal structure is a tetrahedral ice, which is the closest of the higher-density ices (II to XV) to liquid water in configurational energy. Inspection of thermodynamic and transport properties of liquid argon also indicate the existence of a similar prefreezing percolation transition at ambient pressures (0.1 MPa) around 90 K, ~6% above the triple point (84 K). These findings account for many anomalous properties of equilibrium and supercooled liquids generally, and also explain Kauzmann’s “paradox” at a “glass” transition.
机构地区 Department of Physics
出处 《Natural Science》 2018年第7期247-262,共16页 自然科学期刊(英文)
关键词 LIQUID State PERCOLATION Phase Transition Pre-Freezing MESOPHASE Liquid State Percolation Phase Transition Pre-Freezing Mesophase
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部