摘要
Applying quantum computing techniques to machine learning has attracted widespread attention recently and quantum machine learning has become a hot research topic. There are three major categories of machine learning: supervised, unsupervised, and reinforcement learning (RL). However, quantum RL has made the least progress when compared to the other two areas. In this study, we implement the well-known RL algorithm Q learning with a quantum neural network and evaluate it in the grid world environment. RL is learning through interactions with the environment, with the aim of discovering a strategy to maximize the expected cumulative rewards. Problems in RL bring in unique challenges to the study with their sequential nature of learning, potentially long delayed reward signals, and large or infinite size of state and action spaces. This study extends our previous work on solving the contextual bandit problem using a quantum neural network, where the reward signals are immediate after each action.
Applying quantum computing techniques to machine learning has attracted widespread attention recently and quantum machine learning has become a hot research topic. There are three major categories of machine learning: supervised, unsupervised, and reinforcement learning (RL). However, quantum RL has made the least progress when compared to the other two areas. In this study, we implement the well-known RL algorithm Q learning with a quantum neural network and evaluate it in the grid world environment. RL is learning through interactions with the environment, with the aim of discovering a strategy to maximize the expected cumulative rewards. Problems in RL bring in unique challenges to the study with their sequential nature of learning, potentially long delayed reward signals, and large or infinite size of state and action spaces. This study extends our previous work on solving the contextual bandit problem using a quantum neural network, where the reward signals are immediate after each action.