期刊文献+

Rip Currents Have Least Friction

Rip Currents Have Least Friction
下载PDF
导出
摘要 Surface gravity waves continually come to the beach but rarely go back to sea. They bring excess mass to shore which must be returned offshore. Rip currents do that job because there is less overall friction in the nearshore region than there is in the only other imagined circulation, a two-layer scheme, which has in fact never been seen. An argument is presented to support this proposal. If correct, rip currents join a group of geophysical flow phenomena that persist, probably because there is zero friction associated with them, which include surface gravity waves, tornadoes and hurricanes, individually promoted recently. Surface gravity waves continually come to the beach but rarely go back to sea. They bring excess mass to shore which must be returned offshore. Rip currents do that job because there is less overall friction in the nearshore region than there is in the only other imagined circulation, a two-layer scheme, which has in fact never been seen. An argument is presented to support this proposal. If correct, rip currents join a group of geophysical flow phenomena that persist, probably because there is zero friction associated with them, which include surface gravity waves, tornadoes and hurricanes, individually promoted recently.
机构地区 [
出处 《Natural Science》 2020年第5期292-294,共3页 自然科学期刊(英文)
关键词 RIP CURRENTS Least FRICTION Rip Currents Least Friction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部