期刊文献+

Wind Wave Growth

Wind Wave Growth
下载PDF
导出
摘要 A recent formula for the lift force on a low speed wing of circular arc cross-section [<span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;"><a href="#ref1">1</a></span></b></span></span><span><span></span></span><span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">] is adapted to the upward pressure force on the crests of a surface gravity wave propagating in the wind. In both cases</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the main feature is the utilization of the air’s compressibility. At and near a wave crest</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> it is predicted that the air density is increased over the ambient value and that the air density decreases inversely as the square of the upward distance from the radius of curvature of the crest. As a consequence</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the air pressure also decreases upward inversely as the square of the same distance. Therefore, an upward pressure force on each crest occurs which presumably will make the crests grow. Growth rates are largest for small </span><span style="font-family:Verdana;">wavelengths and large mean slopes of the wave surface. Contrary winds should produce </span><span style="font-family:Verdana;">wave growth (not damping) as well as no wind at all.</span></span></span></span> A recent formula for the lift force on a low speed wing of circular arc cross-section [<span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;"><a href="#ref1">1</a></span></b></span></span><span><span></span></span><span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">] is adapted to the upward pressure force on the crests of a surface gravity wave propagating in the wind. In both cases</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the main feature is the utilization of the air’s compressibility. At and near a wave crest</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> it is predicted that the air density is increased over the ambient value and that the air density decreases inversely as the square of the upward distance from the radius of curvature of the crest. As a consequence</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the air pressure also decreases upward inversely as the square of the same distance. Therefore, an upward pressure force on each crest occurs which presumably will make the crests grow. Growth rates are largest for small </span><span style="font-family:Verdana;">wavelengths and large mean slopes of the wave surface. Contrary winds should produce </span><span style="font-family:Verdana;">wave growth (not damping) as well as no wind at all.</span></span></span></span>
作者 Kern E. Kenyon Kern E. Kenyon(4632 North Lane, Del Mar, CA, USA)
机构地区 [
出处 《Natural Science》 2021年第5期137-139,共3页 自然科学期刊(英文)
关键词 Wind Wave Growth Compressed Air Boundary Layer Wind Wave Growth Compressed Air Boundary Layer
  • 相关文献

参考文献2

二级参考文献2

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部