摘要
Lipids due to its hydrophobic nature are transported in the hemolymph mainly by lipoproteic fractions. In the present work we studied the lipoproteic fractions present in the hemolymph of the spider Grammostola rosea. Through ultracentrifugation two lipoproteic fractions are isolated, one of high density named Gr-HDL (δ = 1.13 - 1.15 g/ml) and the other of very high density called Gr-VHDL (δ = 1.24 - 1.27 g/ml) Gr-VHDL in hemolymph is majority in relation to Gr-HDL. In this sense Gr-VHDL fraction has 98.6% of hemolymphatic proteins, and 89.3% of lipids presents in the hemolymph. Both lipoproteic fractions possess phospholipids such as majority lipids (phosphatidylcholine and phosphatidylethanolamine) and 18:1, 16:0, 18:2 and 18:0 as the major fatty acids. In order to confirm the role played by lipoproteic fractions in vitro assays with different 14C-lipid were performed. It was observed that Gr-VHDL takes up mainly free fatty acids and triacylglycerols unlike that observed for Gr-HDL in relation to phosphatidylcholine. Through electrophoresis it was observed that Gr-VHDL has three proteins: a predominant band of 68 kDa and two others of 99 and 121 kDa. Gr-HDL displayed a predominant band of 93 kDa, and other minority of 249 kDa. In conclusion, this study reports lipid characterization of the lipoproteic fractions present in the hemolymph of the tarantula, G. rosea. The role of each lipoproteic fraction in relation to lipid uptake is sustained by in vitro assays. Similarities and differences are found when it is compared to lipoproteins of only the three species of spiders studied.
Lipids due to its hydrophobic nature are transported in the hemolymph mainly by lipoproteic fractions. In the present work we studied the lipoproteic fractions present in the hemolymph of the spider Grammostola rosea. Through ultracentrifugation two lipoproteic fractions are isolated, one of high density named Gr-HDL (δ = 1.13 - 1.15 g/ml) and the other of very high density called Gr-VHDL (δ = 1.24 - 1.27 g/ml) Gr-VHDL in hemolymph is majority in relation to Gr-HDL. In this sense Gr-VHDL fraction has 98.6% of hemolymphatic proteins, and 89.3% of lipids presents in the hemolymph. Both lipoproteic fractions possess phospholipids such as majority lipids (phosphatidylcholine and phosphatidylethanolamine) and 18:1, 16:0, 18:2 and 18:0 as the major fatty acids. In order to confirm the role played by lipoproteic fractions in vitro assays with different 14C-lipid were performed. It was observed that Gr-VHDL takes up mainly free fatty acids and triacylglycerols unlike that observed for Gr-HDL in relation to phosphatidylcholine. Through electrophoresis it was observed that Gr-VHDL has three proteins: a predominant band of 68 kDa and two others of 99 and 121 kDa. Gr-HDL displayed a predominant band of 93 kDa, and other minority of 249 kDa. In conclusion, this study reports lipid characterization of the lipoproteic fractions present in the hemolymph of the tarantula, G. rosea. The role of each lipoproteic fraction in relation to lipid uptake is sustained by in vitro assays. Similarities and differences are found when it is compared to lipoproteins of only the three species of spiders studied.