期刊文献+

Regulation of Expression for the RNP-4F Splicing Assembly Factor in the Fruit-Fly <i>Drosophila melanogaster</i>

Regulation of Expression for the RNP-4F Splicing Assembly Factor in the Fruit-Fly <i>Drosophila melanogaster</i>
下载PDF
导出
摘要 Intron splicing in eukaryotic organisms requires the interactions of five snRNAs and numerous different proteins in the spliceosome. Although the molecular mechanism behind splicing has been well studied, relatively little is known about regulation of expression for these splicing factor proteins. One of these proteins is the evolutionarily-conserved Drosophila RNP-4F splicing assembly factor. This protein is transcribed from a single gene into two developmentally regulated mRNAs that differ in their 5’-UTR structure. In the longer isoform, known to be abundant in the developing fly central nervous system, a conserved retained intron which folds into a stem-loop has been implicated in expression control of the mRNA. Here, we describe construction and utilization of several new rnp-4f gene expression study vectors using a GFP reporter in the ΦC31 system. The results confirm our previous observation that presence of the regulatory stem-loop enhances RNP-4F protein expression. However, in that study, the enhancement factor protein was not identified. We show here that overexpression of the RNP-4F transgene compared to the control results in additional translation, as indicated by the GFP reporter in the fluorescent images. These results are interpreted to show that RNP-4F protein acts back on its own mRNA 5’-UTR regulatory region via a feedback pathway to enhance protein synthesis in the developing fly central nervous system. A model is proposed to explain the molecular mechanism behind rnp-4f gene expression control. Intron splicing in eukaryotic organisms requires the interactions of five snRNAs and numerous different proteins in the spliceosome. Although the molecular mechanism behind splicing has been well studied, relatively little is known about regulation of expression for these splicing factor proteins. One of these proteins is the evolutionarily-conserved Drosophila RNP-4F splicing assembly factor. This protein is transcribed from a single gene into two developmentally regulated mRNAs that differ in their 5’-UTR structure. In the longer isoform, known to be abundant in the developing fly central nervous system, a conserved retained intron which folds into a stem-loop has been implicated in expression control of the mRNA. Here, we describe construction and utilization of several new rnp-4f gene expression study vectors using a GFP reporter in the ΦC31 system. The results confirm our previous observation that presence of the regulatory stem-loop enhances RNP-4F protein expression. However, in that study, the enhancement factor protein was not identified. We show here that overexpression of the RNP-4F transgene compared to the control results in additional translation, as indicated by the GFP reporter in the fluorescent images. These results are interpreted to show that RNP-4F protein acts back on its own mRNA 5’-UTR regulatory region via a feedback pathway to enhance protein synthesis in the developing fly central nervous system. A model is proposed to explain the molecular mechanism behind rnp-4f gene expression control.
机构地区 Department of Biology
出处 《Open Journal of Animal Sciences》 2015年第4期418-428,共11页 动物科学期刊(英文)
关键词 rnp-4f GENE GENE Expression Control ΦC31 Transgenic Vectors UAS-GAL4 System Fluorescence Microscopy rnp-4f Gene Gene Expression Control ΦC31 Transgenic Vectors UAS-GAL4 System Fluorescence Microscopy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部