摘要
Two experiments were conducted to assess the value of hydrophobic starch as a method to encapsulate a supplement consisting of refined fish oil intended for use as a feed supplement for ruminant animals. In Study 1, the product was incubated in vitro for 24 hours. The entire media was analyzed to determine fatty acid composition. In Study 2, the test material was incubated for 0, 2, 4, 6, 8, 10, 12 and 24 hours in order to determine rate of loss of dry matter, as well as the fatty acid profile of the dry matter remaining at 24 hours. Results from Study 1 indicated that 61.1 % of the eicosapentaenoic acid (C20:5) and 75.3% docosahexaenoic acid (C22:6) were still intact after the 24 hour incubation period. In Study 2, 39.1% of the test material was solubilized in the 24 hour period. However, the losses in C20:5 and C22:6 fatty acids were less (25.32% and 27.90% respectively) indicating that the majority of the test product was protected against biohydrogenation. It was concluded that hydrophobic starch can be used to ruminally protected fish oil and to deliver C20:5 and C22:6 fatty acids past the rumen.
Two experiments were conducted to assess the value of hydrophobic starch as a method to encapsulate a supplement consisting of refined fish oil intended for use as a feed supplement for ruminant animals. In Study 1, the product was incubated in vitro for 24 hours. The entire media was analyzed to determine fatty acid composition. In Study 2, the test material was incubated for 0, 2, 4, 6, 8, 10, 12 and 24 hours in order to determine rate of loss of dry matter, as well as the fatty acid profile of the dry matter remaining at 24 hours. Results from Study 1 indicated that 61.1 % of the eicosapentaenoic acid (C20:5) and 75.3% docosahexaenoic acid (C22:6) were still intact after the 24 hour incubation period. In Study 2, 39.1% of the test material was solubilized in the 24 hour period. However, the losses in C20:5 and C22:6 fatty acids were less (25.32% and 27.90% respectively) indicating that the majority of the test product was protected against biohydrogenation. It was concluded that hydrophobic starch can be used to ruminally protected fish oil and to deliver C20:5 and C22:6 fatty acids past the rumen.