期刊文献+

A Theory of Ratio Selection—Lattice Model for Obligate Mutualism

A Theory of Ratio Selection—Lattice Model for Obligate Mutualism
下载PDF
导出
摘要 Mutualisms are cooperative interactions between members of different species. We focus on obligate mutualism, where each species cannot survive without the other. From a theoretical aspect, obligate mutualism is similar to the relationship between male and female. Empirical data indicate a sex-ratio selection: male and female have a specific ratio in their population sizes. In the present paper, we apply lattice model to obligate mutualism between two species, and present a theory of “ratio selection” which is a generalization of sex-ratio selection. Computer simulations are carried out by two methods: local and global interactions. In the former, interactions occur between neighbouring cells, while in the latter they occur between any pair of cells. Simulations in both interactions show the so-called Allee effect: both species can survive, when both densities are large in some extent. However, we find a large difference between local and global simulations. In the case of local interaction, restriction for survival is found to be extremely severe compared to global interaction. Both species require a proper ratio for their sustainability. This result leads to the theory of ratio selection: when interaction occurs locally, the ratio of both species is uniquely determined. We discuss that the ratio selection explains not only the evolution of endosymbionts from free-living ancestors but also the evolution from endosymbionts to organelles. Mutualisms are cooperative interactions between members of different species. We focus on obligate mutualism, where each species cannot survive without the other. From a theoretical aspect, obligate mutualism is similar to the relationship between male and female. Empirical data indicate a sex-ratio selection: male and female have a specific ratio in their population sizes. In the present paper, we apply lattice model to obligate mutualism between two species, and present a theory of “ratio selection” which is a generalization of sex-ratio selection. Computer simulations are carried out by two methods: local and global interactions. In the former, interactions occur between neighbouring cells, while in the latter they occur between any pair of cells. Simulations in both interactions show the so-called Allee effect: both species can survive, when both densities are large in some extent. However, we find a large difference between local and global simulations. In the case of local interaction, restriction for survival is found to be extremely severe compared to global interaction. Both species require a proper ratio for their sustainability. This result leads to the theory of ratio selection: when interaction occurs locally, the ratio of both species is uniquely determined. We discuss that the ratio selection explains not only the evolution of endosymbionts from free-living ancestors but also the evolution from endosymbionts to organelles.
作者 Kei-Ichi Tainaka Tsuyoshi Hashimoto Kei-Ichi Tainaka;Tsuyoshi Hashimoto(Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan;Department of Information Engineering, National Institute of Technology, Matsue College, Matsue, Japan)
出处 《Open Journal of Ecology》 2016年第6期303-311,共9页 生态学期刊(英文)
关键词 Obligate Mutualism Population Dynamics Ratio Selection Allee Effect Lattice Model Sex-Ratio Selection ENDOSYMBIOSIS Obligate Mutualism Population Dynamics Ratio Selection Allee Effect Lattice Model Sex-Ratio Selection Endosymbiosis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部