期刊文献+

UP780, a Chromone-Enriched <i>Aloe</i>Composition, Enhances Adipose Insulin Receptor Signaling and Decreases Liver Lipid Biosynthesis 被引量:1

UP780, a Chromone-Enriched <i>Aloe</i>Composition, Enhances Adipose Insulin Receptor Signaling and Decreases Liver Lipid Biosynthesis
下载PDF
导出
摘要 Nutrigenomic studies were conducted to uncover the mechanism of action for the hypoglycemic and insulin sensitizing effects of UP780. From high fat diet-induced obesity mouse model for UP780, livers and white adipose tissues (WAT) from groups of lean control, high fat diet (HFD), and HFD treated with UP780 were collected for microarray study. Microarray generated gene expression changes were applied to Ingenuity Pathway Analysis for changes in canonical metabolic and signaling pathways. Microarray was validated by quantitative reverse transcriptase-polymerase chain reaction (QPCR), Western blots, liver triglyceride, liver cholesterol, liver steatosis, and insulin ELISA. UP780 treatment decreased liver gene expressions for multiple enzymes involved in fatty acid biosynthesis and triglyceride production. UP780 treatment increased gene expressions globally for the insulin receptor signaling pathway in WAT. Both liver triglyceride and liver cholesterol levels were significantly reduced by UP780 over HFD. The reduction of liver fat was confirmed by microscopic analysis of liver steatosis. Finally, UP780 significantly decreased fasting plasma insulin level over HFD. The mechanism of action for UP780 indicated a reduction of liver fat accumulation and an enhancement in adipose tissue insulin signaling pathway. This provided mechanistic explanation for the in vivo UP780 effects of enhanced insulin sensitiveity and decreased blood glucose in mouse diabetes and prediabetes models. Nutrigenomic studies were conducted to uncover the mechanism of action for the hypoglycemic and insulin sensitizing effects of UP780. From high fat diet-induced obesity mouse model for UP780, livers and white adipose tissues (WAT) from groups of lean control, high fat diet (HFD), and HFD treated with UP780 were collected for microarray study. Microarray generated gene expression changes were applied to Ingenuity Pathway Analysis for changes in canonical metabolic and signaling pathways. Microarray was validated by quantitative reverse transcriptase-polymerase chain reaction (QPCR), Western blots, liver triglyceride, liver cholesterol, liver steatosis, and insulin ELISA. UP780 treatment decreased liver gene expressions for multiple enzymes involved in fatty acid biosynthesis and triglyceride production. UP780 treatment increased gene expressions globally for the insulin receptor signaling pathway in WAT. Both liver triglyceride and liver cholesterol levels were significantly reduced by UP780 over HFD. The reduction of liver fat was confirmed by microscopic analysis of liver steatosis. Finally, UP780 significantly decreased fasting plasma insulin level over HFD. The mechanism of action for UP780 indicated a reduction of liver fat accumulation and an enhancement in adipose tissue insulin signaling pathway. This provided mechanistic explanation for the in vivo UP780 effects of enhanced insulin sensitiveity and decreased blood glucose in mouse diabetes and prediabetes models.
机构地区 Unigen Korea Unigen
出处 《Open Journal of Genetics》 2013年第2期9-86,共78页 遗传学期刊(英文)
关键词 NUTRIGENOMICS Insulin SIGNALING Pathway LIVER Fatty Acid BIOSYNTHESIS LIVER Steatosis ALOE Vera Nutrigenomics Insulin Signaling Pathway Liver Fatty Acid Biosynthesis Liver Steatosis Aloe Vera
  • 相关文献

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部