期刊文献+

Genotypic Diversity and Characterization of Quinolone Resistant Determinants from Enterobacteriaceae in Yaoundé, Cameroon

Genotypic Diversity and Characterization of Quinolone Resistant Determinants from Enterobacteriaceae in Yaoundé, Cameroon
下载PDF
导出
摘要 <strong>Background:</strong> Enterobacteriaceae causes many types of infections which are often treated with quinolones and fluoroquinolone (Q/FQ). The resistance mechanisms to Q/FQ are usually associated with mutations in the quinolone resistance determining region which alter the conformation of target amino acid residues within the protein and in the <em>qnr</em> genes. This study aimed at determining the antimicrobial resistant profile of a sample of Enterobacteriaceae from Cameroon and the genetic diversity in quinolone-resistant isolates in view of implementing a better management, treatment, control and prevention of the transmission of these resistant strains. <strong>Methods:</strong> Identification and antimicrobial susceptibility testing was done using VITEK 2. The detection of plamid-mediated quinolone resistance (PMQR) genes was carried out using the conventional PCR method. Sequencing was done using the Applied Biosystem 3500 genetic analyser. DNA fingerprint was obtained using Pulsed-Field Gel electrophoresis. <strong>Results:</strong> Among 440 Enterobacteriaceae, the most prevalent genera were: <em>Escherichia</em> 178/440 (39.5%);<em>Klebsiella</em> 148/440 (33.6%);<em>Enterobacter </em>35/440 (8%);<em>Pantoea</em> 28/440 (6.4%);<em>Proteus</em> 14/440 (3.2%) <em>Salmonella </em>13/440 (3%). Ampicillin resistance showed the highest prevalence with 371/440 (81%) and Imipenem the lowest resistance 9/440 (2.1%). The ciprofloxacin resistance rate was 161/440 (36.6%). The detected plasmid mediated quinolone resistance (PMQR) genes were: <em>qnrA</em>, 2/161 (1.2%);<em>qnrB</em>, 31/161 (19.3%);<em>qnrS</em>, 13/161 (8.1%): <em>Aac</em> (6')<em>Ib-cr</em>, 84/161 (52.2%) and <em>qepA</em>, 3/161 (1.9%). There were several mutations in the <em>parC</em> gene of <em>Klebsiella</em> leading to S80D and S80N substitutions. Two pairs of <em>Klebsiella</em> <em>peumoniae</em> strains were phenotypically and genotypically identical with 100% similarity in the dendrogramme. <strong>Conclusion:</strong> This study showed that quinolone resistance was high. The PMQR genes contributing to this resistance were diverse. This high PMQR indicates that there has been an unknown circulation of these genes in our community. To avoid the rapid dissemination of these PMQR genes continuous surveillance of antimicrobial resistance should be carried out not only in humans but also in animals to monitor the evolution of these genes. <strong>Background:</strong> Enterobacteriaceae causes many types of infections which are often treated with quinolones and fluoroquinolone (Q/FQ). The resistance mechanisms to Q/FQ are usually associated with mutations in the quinolone resistance determining region which alter the conformation of target amino acid residues within the protein and in the <em>qnr</em> genes. This study aimed at determining the antimicrobial resistant profile of a sample of Enterobacteriaceae from Cameroon and the genetic diversity in quinolone-resistant isolates in view of implementing a better management, treatment, control and prevention of the transmission of these resistant strains. <strong>Methods:</strong> Identification and antimicrobial susceptibility testing was done using VITEK 2. The detection of plamid-mediated quinolone resistance (PMQR) genes was carried out using the conventional PCR method. Sequencing was done using the Applied Biosystem 3500 genetic analyser. DNA fingerprint was obtained using Pulsed-Field Gel electrophoresis. <strong>Results:</strong> Among 440 Enterobacteriaceae, the most prevalent genera were: <em>Escherichia</em> 178/440 (39.5%);<em>Klebsiella</em> 148/440 (33.6%);<em>Enterobacter </em>35/440 (8%);<em>Pantoea</em> 28/440 (6.4%);<em>Proteus</em> 14/440 (3.2%) <em>Salmonella </em>13/440 (3%). Ampicillin resistance showed the highest prevalence with 371/440 (81%) and Imipenem the lowest resistance 9/440 (2.1%). The ciprofloxacin resistance rate was 161/440 (36.6%). The detected plasmid mediated quinolone resistance (PMQR) genes were: <em>qnrA</em>, 2/161 (1.2%);<em>qnrB</em>, 31/161 (19.3%);<em>qnrS</em>, 13/161 (8.1%): <em>Aac</em> (6')<em>Ib-cr</em>, 84/161 (52.2%) and <em>qepA</em>, 3/161 (1.9%). There were several mutations in the <em>parC</em> gene of <em>Klebsiella</em> leading to S80D and S80N substitutions. Two pairs of <em>Klebsiella</em> <em>peumoniae</em> strains were phenotypically and genotypically identical with 100% similarity in the dendrogramme. <strong>Conclusion:</strong> This study showed that quinolone resistance was high. The PMQR genes contributing to this resistance were diverse. This high PMQR indicates that there has been an unknown circulation of these genes in our community. To avoid the rapid dissemination of these PMQR genes continuous surveillance of antimicrobial resistance should be carried out not only in humans but also in animals to monitor the evolution of these genes.
作者 Emilia Enjema Lyonga Mbamyah Michel Toukam Marie-Claire Okomo Assoumou Anthony M. Smith Celine Nkenfou Hortense Kamga Gonsu Anicette Chafa Betbeui Martha Tongo Mesembe Agnes Bedie Eyoh George Mondinde Ikomey Sinata Koulla-Shiro Emilia Enjema Lyonga Mbamyah;Michel Toukam;Marie-Claire Okomo Assoumou;Anthony M. Smith;Celine Nkenfou;Hortense Kamga Gonsu;Anicette Chafa Betbeui;Martha Tongo Mesembe;Agnes Bedie Eyoh;George Mondinde Ikomey;Sinata Koulla-Shiro(Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon;Centre for the Study and Control of Communicable Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon;Center for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa;Higher Teachers’ Training College, University of Yaoundé 1, Yaoundé, Cameroon;University Teaching Hospital, Yaoundé, Cameroon)
出处 《Open Journal of Medical Microbiology》 2020年第2期33-45,共13页 医学微生物学(英文)
关键词 ENTEROBACTERIACEAE Quinolone Resistance Plasmid-Mediated Quinolone Resistance <i>qnr</i> Genes Enterobacteriaceae Quinolone Resistance Plasmid-Mediated Quinolone Resistance <i>qnr</i> Genes
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部