期刊文献+

Physicochemical Characteristics of Mauritia arabica Shell with High Temperature Calcination

Physicochemical Characteristics of Mauritia arabica Shell with High Temperature Calcination
下载PDF
导出
摘要 Mauritia arabica shell (MAS), is widely applied as a Chinese tradition medicine after thermal decomposition. However, it is still uncertain how the thermal decomposition process affects the physicochemical properties of MAS. Moreover, the influences of these properties on the bioavailability have not been well understood. In this investigation, a temperature-programmed pyrolysis process is applied to calcine MAS to achieve the desired MAS with different physicochemical properties. The results showed that a weight loss of 43.27% - 44.73% was detected after MAS was calcined at 900°C, which was mainly attributed to the decomposition of protein, the phase transition of calcium carbonate from aragonite to calcite, and the decomposition of calcium carbonate. The activation energy in the heating duration was calculated by applying the Kissinger-Akahira-Sunose model (KAS), which was 58.13 kJ/mol for crystalline transformation and 181.27 kJ/mol for decomposition. Besides,according to the analyses from Fourier transform infrared (FTIR) and X-ray powder diffraction (XRD) tests, the crystalline of calcium carbonate in MAS was aragonite. These results provide beneficial temperature parameters for the pretreatments of MAS for pharmaceutical usages. Mauritia arabica shell (MAS), is widely applied as a Chinese tradition medicine after thermal decomposition. However, it is still uncertain how the thermal decomposition process affects the physicochemical properties of MAS. Moreover, the influences of these properties on the bioavailability have not been well understood. In this investigation, a temperature-programmed pyrolysis process is applied to calcine MAS to achieve the desired MAS with different physicochemical properties. The results showed that a weight loss of 43.27% - 44.73% was detected after MAS was calcined at 900°C, which was mainly attributed to the decomposition of protein, the phase transition of calcium carbonate from aragonite to calcite, and the decomposition of calcium carbonate. The activation energy in the heating duration was calculated by applying the Kissinger-Akahira-Sunose model (KAS), which was 58.13 kJ/mol for crystalline transformation and 181.27 kJ/mol for decomposition. Besides,according to the analyses from Fourier transform infrared (FTIR) and X-ray powder diffraction (XRD) tests, the crystalline of calcium carbonate in MAS was aragonite. These results provide beneficial temperature parameters for the pretreatments of MAS for pharmaceutical usages.
出处 《Advances in Biological Chemistry》 2019年第5期157-166,共10页 生物化学进展(英文)
关键词 Mauritia arabica SHELL CALCINED MICROSTRUCTURE PHASE CHANGE Mauritia arabica Shell Calcined Microstructure Phase Change
  • 相关文献

参考文献4

二级参考文献31

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部