期刊文献+

Conceptual Modeling of Contaminated Solute Transport Based on Stream Tube Model

Conceptual Modeling of Contaminated Solute Transport Based on Stream Tube Model
下载PDF
导出
摘要 In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions. In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.
出处 《Advances in Chemical Engineering and Science》 2012年第4期481-489,共9页 化学工程与科学期刊(英文)
关键词 CONCEPTUAL Modeling SOLUTE Transport PURE CONVECTIVE Flow STREAM Tube Model TRAVEL Time Distribution Conceptual Modeling Solute Transport Pure Convective Flow Stream Tube Model Travel Time Distribution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部