期刊文献+

Compositionally Driven Viscometric Behaviors of Poly (Alkyl Methacrylates) in Lubricating Oils 被引量:1

Compositionally Driven Viscometric Behaviors of Poly (Alkyl Methacrylates) in Lubricating Oils
下载PDF
导出
摘要 Viscosity index (VI) and shear stability index (SSI) are standard methods used in the lubricant industry to determine temperature-viscosity dependency and resistance to product degradation, respectively. A variety of oil-soluble polymers, including poly(alkyl methacrylates) (PAMAs) are routinely used to control these properties in fully-formulated liquid lubricants. In this report, we use reversible addition-fragmentation chain transfer (RAFT) polymerization to precisely target identical degrees of polymerization in a family of PAMAs with varying lauryl, hexyl, butyl, ethyl, and methyl groups. Then, expanding on previous methodology reported in the literature, we establish structure property relationships for these PAMAs, specifically looking at how intrinsic viscosity [η] and Martin interaction parameters K<sub>M</sub> relate to VI and SSI characteristics. While the intrinsic viscosity [η] is associated with the volume of macromolecules at infinite dilution, the parameter K<sub>M</sub> reflects the hydrodynamic interactions of polymer chains at actual polymer concentrations in lubricating oils. In this paper, we show that the dependence of VI on the non-dimensional concentration c/c* (or c[η]) can be presented in a form of master curve with shift factors proportional to K<sub>M</sub> that decreases with increasing size of alkyl groups. This finding implies that even in the dilute regime, the coil-expansion theory used to explain the effect of macromolecules on VI should be complemented with the idea of hydrodynamic interactions between polymer molecules that can be controlled by the choice of alkyl chains in the family of PAMAs. Viscosity index (VI) and shear stability index (SSI) are standard methods used in the lubricant industry to determine temperature-viscosity dependency and resistance to product degradation, respectively. A variety of oil-soluble polymers, including poly(alkyl methacrylates) (PAMAs) are routinely used to control these properties in fully-formulated liquid lubricants. In this report, we use reversible addition-fragmentation chain transfer (RAFT) polymerization to precisely target identical degrees of polymerization in a family of PAMAs with varying lauryl, hexyl, butyl, ethyl, and methyl groups. Then, expanding on previous methodology reported in the literature, we establish structure property relationships for these PAMAs, specifically looking at how intrinsic viscosity [η] and Martin interaction parameters K<sub>M</sub> relate to VI and SSI characteristics. While the intrinsic viscosity [η] is associated with the volume of macromolecules at infinite dilution, the parameter K<sub>M</sub> reflects the hydrodynamic interactions of polymer chains at actual polymer concentrations in lubricating oils. In this paper, we show that the dependence of VI on the non-dimensional concentration c/c* (or c[η]) can be presented in a form of master curve with shift factors proportional to K<sub>M</sub> that decreases with increasing size of alkyl groups. This finding implies that even in the dilute regime, the coil-expansion theory used to explain the effect of macromolecules on VI should be complemented with the idea of hydrodynamic interactions between polymer molecules that can be controlled by the choice of alkyl chains in the family of PAMAs.
作者 Reid A. Patterson Christopher P. Kabb David M. Nickerson Eugene Pashkovski Reid A. Patterson;Christopher P. Kabb;David M. Nickerson;Eugene Pashkovski(Research and Development, The Lubrizol Corporation, Wickliffe, USA)
出处 《Advances in Chemical Engineering and Science》 2022年第2期65-86,共22页 化学工程与科学期刊(英文)
关键词 Viscosity Index Shear Stability Index POLYMETHACRYLATES Lubricating Oils Viscosity Index Shear Stability Index Polymethacrylates Lubricating Oils
  • 相关文献

参考文献1

共引文献3

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部