摘要
The radiofrequency plasma (13.56 MHz) was employed to polymerize trimethyl borate (TMB) monomer/N2 gas mixture on the surface of biaxially oriented polypropylene (BOPP) films. Plasma polymer coated polypropylene films were examined by flame retardancy test (limiting oxygen index, LOI). The highest LOI value calculated for the untreated BOPP sample was 18.4 (v/v O2%) and 24.2 (v/v O2%) for the 55 W 30 minutes treated sample. The plasma polymers were characterized by FTIR spectroscopy and AFM. According to the FTIR results, the -OH, B-CH3, B-O, and BH2 functional groups were detected. It was found that the highest surface roughness belonged to 40 W 30 min treated BOPP sample which was calculated as 9.78 nm (10 μm × 10 μm). Moreover, the wettability of the modified BOPP film surfaces was characterized via contact angle measurements. The water contact angle values have decreased from 109.6? to the lowest value of 68.2? after the plasma treatment. The results showed that TMB/N2 plasma modification could be used as an alternative method for the enhancement of flame retardancy and hydrophilicity of BOPP film.
The radiofrequency plasma (13.56 MHz) was employed to polymerize trimethyl borate (TMB) monomer/N2 gas mixture on the surface of biaxially oriented polypropylene (BOPP) films. Plasma polymer coated polypropylene films were examined by flame retardancy test (limiting oxygen index, LOI). The highest LOI value calculated for the untreated BOPP sample was 18.4 (v/v O2%) and 24.2 (v/v O2%) for the 55 W 30 minutes treated sample. The plasma polymers were characterized by FTIR spectroscopy and AFM. According to the FTIR results, the -OH, B-CH3, B-O, and BH2 functional groups were detected. It was found that the highest surface roughness belonged to 40 W 30 min treated BOPP sample which was calculated as 9.78 nm (10 μm × 10 μm). Moreover, the wettability of the modified BOPP film surfaces was characterized via contact angle measurements. The water contact angle values have decreased from 109.6? to the lowest value of 68.2? after the plasma treatment. The results showed that TMB/N2 plasma modification could be used as an alternative method for the enhancement of flame retardancy and hydrophilicity of BOPP film.
基金
supported by National Boron Research Institute(BOREN)contact grant number BOREN-2006-C-02
The State Planning Organization(DPT)contact grant number 2001K-120590.