期刊文献+

The Synthesis of Gold Nanoparticles Using <i>Amaranthus spinosus</i>Leaf Extract and Study of Their Optical Properties

The Synthesis of Gold Nanoparticles Using <i>Amaranthus spinosus</i>Leaf Extract and Study of Their Optical Properties
下载PDF
导出
摘要 We report here the application of a medicinally important plant Amaranthus spinosus for the synthesis of gold nanoparticles (AuNPs). Different concentrations of ethanolic leaf extract of the plant were reacted with aqueous solution of HAuCl4·4H2O under mild reaction conditions. Synthesis of AuNPs was confirmed from the UV-Vis study of surface plasmon resonance property of the colloidal solution. Transmission electron microscopy (TEM) revealed particles as spherical and triangular in shape. X-ray diffraction (XRD) confirmed the crystalline nature of AuNPs with average size of 10.74 nm as determined by Debye-Scherrer’s Equation. Fourier transform infra-red (FT-IR) analysis of leaf extract and lyophilized AuNPs showed the presence of various functional groups present in diverse phytochemicals. Energy dispersive X-ray (EDX) of purified AuNPs confirmed the formation of AuNPs and surface adsorption of biomolecules. We further investigated the toxicity of the synthesized AuNPs and found non toxic to the cancer cell lines and could be used for biomedical applications. We report here the application of a medicinally important plant Amaranthus spinosus for the synthesis of gold nanoparticles (AuNPs). Different concentrations of ethanolic leaf extract of the plant were reacted with aqueous solution of HAuCl4·4H2O under mild reaction conditions. Synthesis of AuNPs was confirmed from the UV-Vis study of surface plasmon resonance property of the colloidal solution. Transmission electron microscopy (TEM) revealed particles as spherical and triangular in shape. X-ray diffraction (XRD) confirmed the crystalline nature of AuNPs with average size of 10.74 nm as determined by Debye-Scherrer’s Equation. Fourier transform infra-red (FT-IR) analysis of leaf extract and lyophilized AuNPs showed the presence of various functional groups present in diverse phytochemicals. Energy dispersive X-ray (EDX) of purified AuNPs confirmed the formation of AuNPs and surface adsorption of biomolecules. We further investigated the toxicity of the synthesized AuNPs and found non toxic to the cancer cell lines and could be used for biomedical applications.
出处 《Advances in Materials Physics and Chemistry》 2012年第4期275-281,共7页 材料物理与化学进展(英文)
关键词 Gold Nanoparticles Leaf Extract ANTI-OXIDANT AMARANTHUS spinosus Crystal Growth Gold Nanoparticles Leaf Extract Anti-Oxidant Amaranthus spinosus Crystal Growth
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部