期刊文献+

Impedance Spectroscopy for Annealing-Induced Change of Molybdenum Oxide in Organic Photovoltaic Cell

Impedance Spectroscopy for Annealing-Induced Change of Molybdenum Oxide in Organic Photovoltaic Cell
下载PDF
导出
摘要 Organic photovoltaic cells (OPVs) have been investigated for a long time, and practical realizations have been also in progress due to their high photovoltaic performance over 12%. In this study, we fabricated normal OPVs and investigated the reason of an improved optical-to-electrical conversion efficiency by annealing the MoOx layer. The photoconversion efficiency was improved up to 5.65% from 2.05% after annealing at 160°C for 5 min, and the external quantum efficiency also increased for all the measurement wavelength ranging from 300 to 900 nm. Especially, the short circuit current density increased among photovoltaic parameters. The carrier transport resistance of photoactive layer was found to be reduced by evaluating the impedance measurement. These results indicate that defects at the MoOx/organic interface were successfully reduced by the thermal annealing process of MoOx layer. The efficient carrier transport was realized for the annealed-device, resulting in the high device performance. In addition, the relaxation and electron recombination times were also reduced by the annealing process, which lead to the improved photovoltaic performance. Organic photovoltaic cells (OPVs) have been investigated for a long time, and practical realizations have been also in progress due to their high photovoltaic performance over 12%. In this study, we fabricated normal OPVs and investigated the reason of an improved optical-to-electrical conversion efficiency by annealing the MoOx layer. The photoconversion efficiency was improved up to 5.65% from 2.05% after annealing at 160°C for 5 min, and the external quantum efficiency also increased for all the measurement wavelength ranging from 300 to 900 nm. Especially, the short circuit current density increased among photovoltaic parameters. The carrier transport resistance of photoactive layer was found to be reduced by evaluating the impedance measurement. These results indicate that defects at the MoOx/organic interface were successfully reduced by the thermal annealing process of MoOx layer. The efficient carrier transport was realized for the annealed-device, resulting in the high device performance. In addition, the relaxation and electron recombination times were also reduced by the annealing process, which lead to the improved photovoltaic performance.
出处 《Advances in Materials Physics and Chemistry》 2017年第8期323-333,共11页 材料物理与化学进展(英文)
关键词 ORGANIC PHOTOVOLTAIC CELLS PTB7-Th MoOx ANNEALING IMPEDANCE SPECTROSCOPY Organic Photovoltaic Cells PTB7-Th MoOx Annealing Impedance Spectroscopy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部